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Abstract—One of the most challenging tasks in augmented
reality is to develop a tracking system for industrial scenarios.
This is due to the fact that this environment has characteristics
that defy most of the techniques available, such as textureless
objects that in some cases are too large and in others are
very small, as well as may be very close to each other or
occluding themselves. This work proposes the combination of
established techniques for 3D reconstruction and tracking, as
well as a calibration routine, that is suitable for this type
of scenario. This complete tracking system was validated at
the ISMAR Tracking Competition, a contest that simulates
industrial scenarios and is promoted to challenge state of the
art trackers. The case study simulated a manufacturing task in
which the environment was divided into five areas, and the user
had to be guided by the tracking system through these areas
collecting specific objects from an area to put them at a specific
location in another one. A discussion regarding the tracking
system results is lodged , aiming to introduce an analysis that
could help others during the development of their own tracking
systems for industrial scenarios.

Keywords-augmented reality; industry applications; 3D
tracking;

I. INTRODUCTION

In recent years, Augmented Reality, or simply AR, has

received attention as a field that is changing the way people

interact with the world. In order to relate virtual content

with the real environment, AR systems are built based on

tracking techniques that can discover in real-time where the

virtual information should be added [1].

In industrial scenarios, tracking techniques can have

several applications. They can be used to help an operator

to execute a maintenance task [2] or to allow a machine to

analyze a product [3]. Unfortunately, industrial scenarios are

often difficult to track since they may have poorly textured

objects with lots of smooth surfaces. Strong light variation

is also a difficulty, as well as the size of equipment that may

be very small, among others.

When developing a tracking system for industrial

scenarios, a model-based approach is usually chosen because

of its precision [4]. However, if a model-based tracker is

employed, it is essential to associate it to an automatic

reconstruction process that will generate the 3D information

to be tracked. Besides that, a correct calibration between

the generated model and the real world may be necessary

to relate the world coordinate system with the reconstructed

and tracked coordinate system.

In order to achieve a solution capable of dealing with

some major difficulties in the industrial scenario, this work

explains the integration of a 3D model-based tracker with

a reconstruction from images technique and a calibration

routine. This tracking system was validated at the ISMAR

Tracking Competition, which aims to challenge state of

the art trackers through a simulation close to a real

world scenario. In the particular edition where our tracking

system was used, the contest simulated a manufacturing

situation, which is part of many industrial environments.

From the analysis of the contest it was possible to discuss

many problems encountered in the industrial scenario. As

far as the authors know, there is no work discussing

the use in industrial scenarios of an integrated tracking

solution using well known techniques for reconstruction,

calibration and 3D tracking. There is also no work discussing

the ISMAR contest and relating it to the industry field.

Another important contribution of this paper is to share

and discuss the experiences and challenges found during

the development of a tracker for an industrial scenario.

Therefore, this paper provides a starting point for anyone

interested in engaging into these problems from a practical

point of view.

This paper is organized as follows. In Section II recent

advances in 3D tracking, reconstruction and calibration

techniques are discussed; the development of an integrated

solution for generating 3D models, calibrating coordinate

systems and tracking is explained in Section III; Section IV

details the case study performed at the ISMAR Tracking

Competition; the result of the integrated solution at the

competition is analyzed in Section V; the lessons learned

about how to build a tracking system for an industrial

scenario are discussed in Section VI; finally, in Section VII,

major conclusions are drawn and potential future work for

tracking in industrial scenarios arises.
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II. RELATED WORK

There are several ways to track objects. It can be

accomplished using only RGB cameras or adding other

equipment such as depth sensors [5], magnetometers [6] and

inertial sensors [7], to name only a few. The 3D tracking

system presented in this paper is a monocular one, and

therefore major state of the art techniques are discussed in

sequence for tracking, reconstruction and calibration based

on video, focusing their application to industrial scenarios.

A. Tracking

Video based tracking can be classified in two categories:

recursive tracking, where a previous pose estimate is

required for computing the current pose of the object; and

tracking by detection, where the object pose is calculated

without any previous estimate. While recursive tracking

is often faster and/or more accurate/robust, tracking by

detection allows automatic initialization and easy recovery

from failures. Existing techniques for natural feature

tracking and detection can also be classified as model-

based or model-less. Model-based methods make use of a

previously obtained model of the target object [4]. Model-

less techniques are also known as Simultaneous Localization

and Mapping (SLAM) methods [8], since they estimate both

the camera pose and the 3D geometry of the scene in real

time.

Model-based techniques can be classified regarding the

type of natural feature used [9]. The recursive tracking

methods can be divided in the following categories: edge

based, where control points sampled along a 3D edge model

of the object are matched with strong gradients in the

query image [10]; template based, which aim to estimate

the parameters of a function that warps a template in a

way that it is correctly aligned to the query image [11];

and local invariant feature based, where local features that

are invariant to distortions such as rotation and illumination

changes (e.g. Harris corners [12], Good Features to Track

[13]) extracted from both model and query images are

matched [14] [15]. Model-based tracking by detection

methods can be classified in the following categories: edge

based, which make use of specific edge representations for

detecting and estimating the pose of target textureless objects

[16] [2]; and local invariant feature based, which rely on

matching local invariant features extracted from model and

query images, even if they were obtained from significantly

different viewpoints [17] [18].

B. Reconstruction

Since the model-based methods are a common approach

for markerless tracking, the acquisition of the 3D model of

the target object is an important step. Sometimes the target

object is very simple to be modeled manually, such as a

plane or a box. However, it is unlikely that in the industrial

scenario the target objects will be that simple. Manually

modeling these complex cases is a difficult task and could

take too much time, so it may be necessary to have an

automatic 3D reconstruction of the target object.

There are several ways of making an automatic 3D

reconstruction. One of the most efficient and precise

approaches is using laser scanners [19]. With this equipment

it is possible to generate a dense 3D model of an object with

millimetric precision. The downside is that these lasers are

expensive and sometimes it is hard to use them to reconstruct

places difficult to access because of their size and weight.

Another automatic 3D reconstruction method is based on

structured lights [20]. This technique consists in projecting

on the scene light patterns that are previously known. Then,

a camera captures the projection of these light patterns.

The 3D model is calculated based on the distortion of

this projection. Since this technique requires only a simple

camera and a common projector, it is quite inexpensive,

especially when compared with the laser approach. However,

structured lights reconstructions are much more imprecise

and impossible to be used in a bright environment, such

as an outdoor area during day. Figure 1 shows the result

obtained by this type of reconstruction.

The image based 3D reconstruction method is one of

the most common approaches to generate 3D models

automatically. There are also different techniques to make

this kind of 3D reconstruction work, such as SfM (Structure

from Motion) [21] and SLAM [8]. What these techniques

have in common is that they take 2D images of the scene

and use them to generate the 3D model as shown in

Figure 1. Usually that process can be done by employing

a feature detector that could be the same as the one used

during the tracking. Nowadays there are several image based

reconstruction techniques that achieve good precision [22].

Even though it is also a cheap approach since it only needs

a simple camera to take pictures or make a video of the

scene, this method is often very hard to reproduce.

Figure 1. On the top row there are different views from a 3D model
generated using a structured light approach; on the bottom row, a building
reconstructed using the SfM technique.
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C. Calibration

In AR applications, it is sometimes mandatory to have a

coherent scale between the 3D reconstructed model and the

real world coordinate system. For example, in an industrial

scenario the equipment are modeled based on their real

scale and could be used to augment the scene [2]. Based on

projective geometry properties, even with calibrated cameras

in which the intrinsic parameters are known, it is not possible

for a technique based only on images to directly achieve

a metric reconstruction without some input from the user.

The automatic 3D reconstruction from images is an up-to-

scale process and just returns a similarity reconstruction of

the object [23]. Only techniques based on depth sensors are

able to achieve a metric reconstruction directly since they

acquire from the depth sensor a real depth during the capture

process [24].

For a 3D reconstruction based on images there are several

ways to achieve a metric reconstruction. If the user knows

some 3D points from the scene and is able to correctly relate

them to the similarity reconstructed points, it is possible to

find a calibration matrix that can take all the up-to-scale

points to the metric reconstruction system [23]. When the

user has a previous 3D reconstruction of some object or part

of the scene it is possible to match these 3D models and

use an absolute orientation process to estimate the correct

alignment between them and use these information to get a

metric reconstruction [25].

III. INDUSTRIAL SCENARIO TRACKER

In general, the nature of objects appearance in industrial

scenarios favors the use of edge based trackers since the edge

information in these objects is more evident, and usually

they have low texture information, as seen in Figure 4. On

the other hand, it is hard to perform real-time detection of

objects based only on their edge information. In addition,

for an edge-based tracker, when there is a crowded group

of objects, it is harder to identify each object separately.

The occlusions and the high number of nearby edges makes

difficult the task of correlating the searched edges with the

ones present in the scene. At last, in order to track each

object edges, it is needed to acquire in advance its 3D

model definitions, which is not always possible, and so an

automatic reconstruction phase is preferred.

Figure 2. Typical industrial scenario in which most of the equipment are
textureless and with edges well defined.

Taking into account all these issues, the presented

tracking system is based on invariant keypoints extraction

and matching. Even though the use of this approach is

recommended for high texturized scenarios, these keypoints

are also able to describe low texture objects as long as

there is enough color information in the whole scene. It

aims to perform real-time detection and tracking of complete

complex scenes by using an automatic 3D reconstruction

based only on images. Beyond, the system is able to

automatically initialize and recover from failures. This

feature is highly recommended for industrial scenarios since

the user of the tracking system, being a human or robot,

may navigate and focus on not traceable scene regions.

In addition, the use of invariant keypoints enables the

tracking of the scene as a whole, being not restricted to

planar scenarios or single objects tracking. Furthermore, a

metric calibration is also necessary to applications that need

to relate real coordinates from the scene and the tracked

models.

A. Tracking

The implemented tracker presented here is mainly based

on the work of Gordon and Lowe [26] and can be divided

in two phases: an off-line step in which the 3D model to

be tracked is generated and an on-line stage that consists

in keypoint extraction, description, matching and pose

calculation steps. The off-line phase will be discussed in

the next subsection.

The first step of the on-line phase consists in extracting

and describing 2D keypoints from the current image using

the Scale-Invariant Feature Transform, better known as

SIFT algorithm [17]. SIFT keypoints are invariant to scale,

illumination and viewpoint changes, being more suitable to

track objects with high color texture variation on its faces.

However, as it will be discussed in the results section, these

keypoints are also able to describe low texture objects as

long as there is enough color information in the whole scene.

After extracting and describing the SIFT keypoints, the

system matches the current image keypoints with the set of

keypoints from the reconstructed model acquired in the off-

line phase. This matching is done by a best bin first search

algorithm with the help of a kd-tree to speed-up the process.

Even with all the robustness of the SIFT matching, some

points could be wrongly correlated, resulting in outliers. To

remove these bad matches, the tracker was improved with

a technique that is able to validate keypoints orientations,

even when out-of-plane rotations occur [27].

Given a set of matches, it is possible to assign a 3D

coordinate from the model for each matched keypoint.

Thus, the pose calculation can be performed using a set

of 2D-3D correspondences, in which the 2D points come

from the image and the 3D are from the generated model

in the off-line phase. This knowledge allows the pose

calculation in each frame, independently of the previous
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results, guaranteeing a detection behavior of the tracker and

allowing it to automatically recover from tracking failures.

The pose estimation is calculated by using the RANSAC

algorithm allied to the EPNP estimator [28].

B. Reconstruction

After the analysis of some constraints from a general

industrial scenario environment, a video based approach was

chosen to generate the 3D model of the scene. For instance,

the tracking scene may be very bright, that invalidates the

use of a structured light technique. In other situations, such

as a small warehouse, it is difficult to use a laser scanner

because of its size. Besides, this type of equipment is very

expensive, as mentioned before.

There are several image based 3D reconstruction tools

available, some of them are commercial, some are

commercial with free use for academic purposes and others

are academic. Most are based on SfM technique and need

only a few images as input to generate the 3D model. Based

on a comparison of the principal tools [29], the VisualSfM

[30] was chosen as reconstruction tool.

Some reasons were determinant to select this tool. One

is that it uses SIFT features in the reconstruction process,

which is the same used by the chosen tracker, as mentioned

before. Because of that, most of the reconstructed 3D points

come from 2D points that have a high probability to be also

extracted by the tracker, which makes the matching phase

more stable. It is important to notice that the VisualSfM

is the tool that produces the point cloud with the greater

quantity of points from the ones analyzed. To maximize

even more the extraction of correspondent points, it is a

good practice to take the pictures that will be used by the

VisualSfM with the same camera that will be used in the

tracking phase.

Another advantage of the VisualSfM is that it exports the

model as an ASCII file that has the projection matrix for

every image used in the reconstruction and all the tracks

found in the process. A track is a set that contains one 3D

point and all the correspondent 2D points used to generate

it. The track also contains one image for each one of the

2D points. So, this file is loaded and this information is

converted to the data structure that will be used in the

tracking phase. It is also possible to export the model as

.ply, a common file format for 3D models.

The VisualSfM tool has a free license policy for personal,

non-profit, or academic use as long as the tool is not

modified and the VisualSfM authors are referenced, which

is the case for this work. For commercial use, the VisualSfM

authors must be contacted for an appropriate licensing.

C. Calibration

In order to achieve a metric model to be tracked,

the presented tracker system employs a calibration phase

based on the work of Hartley and Zisserman [23]. Since

the VisualSfM provides a reconstruction ASCII file with

all intrinsic Kj and extrinsic parameters [R j|t j] for each

reconstructed camera j, it is possible to combine these

information with 2D points matched in a subset of the

images set (m j=0,m j=1,m j=2) to correctly approximate its

3D coordinates Msim, a known process called triangulation

[23]. Figure 3 illustrates this procedure. In our tracker

for industrial scenarios, a subsystem based on manual

intervention was implemented to achieve this goal.

Figure 3. Triangulation and Calibration.

After the triangulation it is possible to correlate the 3D

triangulated points (Msim
0 ,Msim

1 , ...,Msim
i ) with known 3D

metric points (Mmet
0 ,Mmet

1 , ..,Mmet
i ) in order to estimate a

transformation matrix T[4x4]. This matrix can be applied to

all 3D points in homogeneous coordinates and take them

from the similarity model to the metric one. The metric

points Mmet
i are loaded from a calibration file provided by the

user with the correct measurement in real world coordinate

system. As the transformation matrix is estimated by a linear

system, there are necessary at least four correspondences

between similarity and metric points to achieve a unique

solution.

IV. CASE STUDY

The evaluation of a tracking system in AR applications

is not an easy issue [31]. Many efforts have been done

in the past years to provide metrics and standards to

analyze the aspects related to this problem [32] [33]

[34]. Since 2008, the International Symposium on Mixed

and Augmented Reality (ISMAR) promotes the ISMAR

Tracking Competition, a contest aiming to challenge state

of the art trackers through real world problems, therefore

stimulating breakthroughs in current solutions. All the

scenarios prepared for the competition try to replicate

real problems for tracking systems, such as lighting
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conditions, task specificities, user constraints, levels of

texture information available, objects relative size, camera

resolution and others.
In 2012 the ISMAR Tracking Competition simulated a

manufacturing task in which the environment was divided

into five areas. The user, simulating a worker, had to be

guided by the tracking system through these areas collecting

specific objects from an area to put at a specific location in

another one. The only input for the tracking system was

the 3D coordinates of the objects to be picked up and

the position where they should be placed. Each area was

composed by one table with specific objects placed over it.

The level of difficulty was different for each table, depending

on the size, shape and texture of its objects. These five areas

can be seen in Figure 4.

Figure 4. ISMAR Tracking Competition manufacturing scenario: (a)
texturized planar poster with eight drinking glasses over it; (b) cardboard
box with metal pieces inside and surrounding it; (c) plastic white board
with several small pieces with different shapes, sizes and colors; (d) white
planar paper with glass goblets and plastic cups; (e) table with the position
where the picked up objects had to be dropped.

Figure 4 (a) shows that over the first table lied a texturized

poster of the ISMAR conference to simulate the simpler case

of a textured planar surface. There were also eight drinking

glasses in order to disturb the tracking by adding refraction

effects, which means that the number of outliers may be

enlarged since most of the techniques are not able to deal

with such artifact. Often industrial scenarios provoke the

presence of outliers even with robust feature detection and

matching, as discussed in the section above.

The table seen in Figure 4 (b) had several metal pieces,

some inside and others outside of a cardboard box. The goal

was to simulate areas that are difficult to access. Another

difficulty for the tracking system was the fact that they

scrambled the objects outside the box after the calibration

phase as an attempt to simulate small scenario changes

between calibration and tracking, a possible problem in

manufacturing environments.

The table in Figure 4 (c) simulated a typical

manufacturing scenario with several small pieces, some

different from each other and some with the same size and

shape. These characteristics made it more suitable for edge

based techniques and represent a common problem at many

industrial scenarios which is the absence of textures and the

similarity between objects.

In the table shown in Figure 4 (d) the organizers created

a tricky scenario with several glass goblets and plastic

cups over a textureless table. This table simulates the case

in which there are objects over a planar surface with

well-defined edges. An edge based technique would suffer

because of the glasses and a texture based is not suitable

for this textureless environment, but a simple homography

based planar tracking is capable of handling this scene.

The last area, seen in Figure 4 (e), was the target table.

It had several objects and locations for putting the objects

coming from the previous tables. Some of them were close

to each other and others were superposed. Since the objects

picked had to be dropped in one of these objects or space

locations, it analyzed the tracking precision. This table was

also composed by both textured and textureless objects.

This was the most important table since all the objects had

to be dropped there, given half of the score points in the

competition.

The contest runs during two days, being the first one

dedicated to the setup phase. Each team was allowed to

explore the room, calibrate their system, test and adjust

their tracking algorithms before the competition. In order

to calibrate the system, all teams received a file with the

metric coordinates of the 3D points corresponding to all

markers placed in room. These markers had just the function

to enable the calibration and could not be used to help the

tracking.

The actual competition happens in the second day. Every

team receives a file with the 3D points of objects that have

to be picked up from the four first tables and the position

where they must be dropped in the last one. The system has

to guide the user through this task, simulating the real world

manufacturing scenario.

V. RESULTS

The presented tracker was developed in C++ using data

structures and basic functions from the OpenCV [35], VXL

[36], DSVideoLib [37] and OpenGL [38] libraries. The IDE
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used was Microsoft Visual Studio 2010. The competition

rules state that the tracker system must run using any

device that only one person can carry and still be able to

pick up the objects. Thus, the device used was a notebook

with Intel Core i7 processor having 4 cores of 2.3 GHz

each, 8 GB of RAM memory and the NVIDIA GeForce

GTX 670M graphic card. The Microsoft LifeCam Studio

webcam provided the video and image input for tracking

and reconstruction, both with 640 x 480 pixels resolution.

Firstly, the reconstruction quality was evaluated, since it

is very important for an accurate model-based tracker. In the

setup phase several pictures of the tables were taken to be

used as input for the VisualSfM. As mentioned before, the

camera used in the reconstruction was the same as for the

tracking phase. There are not an ideal number of photos to

be used.

The first decision to make was to use a single

big reconstruction for the entire room or to use one

reconstruction for each table. If using a single reconstruction

the calibration just have to be done once and tables that

do not need to have many visible markers around each

to be calibrated. That could speed up the process and

minimize the chance of not having all tables calibrated. The

problem on this approach is to achieve a reconstruction that

contains all tables. The Visual SfM tends to maximize the

quality of the reconstruction by splitting it into a set of

reconstructions, generating one reconstruction for each set

of images that contains many textured elements in common.

That means that would be better to reconstruct each table

separately. Thus, the authors tried to use the minimum

quantity of pictures possible that could generate an adequate

reconstruction of most of the tables. This is due to the fact

that the higher the number of photos the longer the time to

perform the reconstruction [29].

In this case, there are not metrics or values defined that

can attest with certainty that the reconstruction result is

adequate, but indeed there are some indications that can

guide the evaluation process. One of them is the number

of images that the Visual SfM used for the reconstruction.

The number of 3D points composing the model tends to

increase since more pictures were used to feed it, degrading

the performance. Additionally, the reconstruction was also

visually evaluated by the percentage of the whole scene

reconstructed and the number of points that do not fit to

the real world (outliers). In some cases the result was not

good enough to enable the tracking. When that happened,

more pictures were taken and a new reconstruction was made

using the original images in addition with the new ones.

Figure 5 shows the reconstruction result for all tables. In

most of them the 3D model generated was visually coherent

with the real scene. Only the reconstruction result of table (d)

was not good, because VisualSfM uses texture information

to generate the 3D model and this table does not have this

characteristic.

The tracking system used in the competition performed

in real-time, with a FPS of 29.41 for a 320 x 240 resolution

image and 20.94 for a 640 x 480 frame. As mentioned

before, the goal was to pick up objects from four of the five

tables and drop them at a specific location in the fifth table.

The system was able to track every table individually, as can

be seen in Figure 6. However, the authors had problems to

align some of the reconstructions with the defined coordinate

system, being able to pick and release the objects from the

tables a and e that were correctly calibrated. An important

matter was that the calibration system used needs the 3D

point in metric coordinates of at least four non-coplanar

markers in each provided table. For most of the tables it

was not possible to reconstruct all of the needed markers.

In some tables there were just two or three easily visible

markers. The others were too far from the table or were in

another one.

Every table simulates a different situation in the industrial

scenario, presenting different challenges. For instance, table

(a) represents the most common case for texture based

trackers, which is a planar textured pattern. The addition

of drinking glasses represented an addition to number of

outliers in the system by the refraction. However, since

a large area of the poster remained unaffected by the

refraction, the tracker was able to keep tracking correctly

a sufficient number of features in order to calculate the

final pose. The pose also showed a good precision because

the outliers generated by the refraction related error were

discarded either in the outlier removal or in the RANSAC

processing steps.

The goal with table (b) was to collect one of the metallic

pieces in the interior of the box. Even though there were

several of these textureless objects, the SIFT algorithm

was able to extract and match the features required. This

was probably because the overall scene was treated as a

large textured pattern. Besides that, the box itself had some

texture on it, which helped the tracking technique. After the

setup phase, the competition organizer changed the metallic

objects that were outside the box. This simulates a situation

in which workers would change the environment during the

tracking. Since the box and the pieces inside it did not

change, the tracker should rely only on these parts of the

table. In Figure 6 it is possible to see that several features

were extracted from those areas.

On table (c) there was a set of organized small colored

pieces. Tracking each piece separately is a non-trivial task

for texture based trackers. However, since the pieces are

grouped in the same scene region, the overall area generates

traceable textured patterns which can be detected by the

SIFT extraction. The repetitive nature of the arrangement on

this table maybe an issue but in this case the repeatability

is not massive enough to nullify the distinctiveness property

of the extracted features.

Table (d) is specifically hard to track using keypoints
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Figure 5. The reconstruction result for every table in the tracking competition. Tables (a), (b), (c) and (e) could be well reconstructed using feature
information. The exception was the table (d), that is textureless.

Figure 6. Each row shows four frames of the working tracker on a different table. The green dots are the features extracted in the frame that match with
keypoints detected in previous frames.

information. This table setup is composed mainly by a white

table cloth and a set of glass goblets and plastic cups,

containing almost no reliable color information. Figure 6

shows that only few features are tracked over the table

itself. However considering the overall scene information,

sometimes it is possible to reconstruct and track determined

scene by using not only the targeted model but also

additional parts of the environment. This way, it is possible

to perform a sort of environment tracking, in which the

tracking procedure can match keypoints with other scene

regions than the model itself. In this case, due to the presence

of the textured pattern from the floor, SIFT keypoints were

extracted and matched, making it possible to track the

camera position in the scene even without a rich textured

model as a target. This kind of tracking is not ideal since it

is needed to fit more elements in the captured frames, other

than the aimed model, however it turns to be an alternative

to guide the user in these difficult scenarios.

Finally, table (e) presented an intermediate scenario

between table (c) and table (d). It presents a few non-textured

objects over the table. These objects are generally bigger and

more complex than the ones presented in table (c), which
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makes possible the identification of features even without

crowded scene parts.

The overall results of the presented tracking procedure

showed to be reliable in different scenarios regarding specific

issues like refraction, self-occlusion, non-textured targets,

planar and non-planar cases and dealing with both, crowded

scene regions and sparse objects distribution.

VI. LESSONS LEARNED

The authors learned some important lessons from the

experience of researching, developing and validating a

tracker system for an industrial environment. By sharing

these lessons learned with the community, the authors

believe that it might help others researchers to prevent errors

or anticipate problems in the development of their own

tracking systems.

First of all, the image based reconstruction is very

important for the final result. Without a good reconstructed

model it is almost impossible to have a good tracking

based on models of the target objects. For achieving a

good reconstructed model there are often required more

matches that for the tracking itself. In order to consider a

reconstruction result a good one for tracking, there should

also be observed aspects such as percentage of the whole

scene reconstructed and types of objects reconstructed,

number of wrong reconstructed parts, number of points that

do not fit to the real world (outliers) and number of images

used in the reconstruction. For more complex scenes it could

be necessary to use more images and this could slow down

the reconstruction process. Thus, it could be interesting to

insert textured patterns on the scene for the setup phase in

order to improve scene reconstruction. There is a chance that

the tracking phase can succeed without having the textured

patterns present on the scene just because the reconstruction

is better.

The calibration is a very critical step for the tracking

to work properly, since it is necessary to have enough

reconstructed images with the calibration points visible on

them. One approach that helps to solve this problem is

to force the reconstruction algorithm to not discard some

defined images, warranting that the final reconstruction

result used them. Another possibility is to reconstruct subsets

of two or three tables together to simplify the calibration.

It must warrant that the four required calibration points

appear in it. As discussed before, a possibility is to use a

reconstruction for the entire room but to do so the system

must use a 3D reconstruction tool that does not split the

reconstruction in small sets. Sometimes it is not possible

because of the distance or obstacles between industrial areas.

Since it could degrade the reconstruction result it deserves

a deeper analysis.

Another important point is to do the calibration in a

reverse way. Instead of calibrating all the models and

then tracking the complete calibrated model, it is better to

track using the non-calibrated model and change the virtual

information to be added using the inverse calibration. This

procedure maintains the tracking more stable because the

calibration process could add error to the model.

The automatic focus and exposure control of the camera

will also add problems to the process. There are some

software as the Microsoft Lifecam that can be used to control

and fix these parameters manually. Sometimes because of the

lighting changes the algorithm gets lost and just comes back

when the focus and exposure stabilizes.

During competition it was also noted that the system

should give feedback to the user regarding tracking quality,

since industrial scenarios can have many similar objects

near each other and the user can be fooled by an incorrect

guidance caused by a tracking failure. Due to that, a message

was displayed in the title bar of the application in order to

inform the use if tracking was correct or not.

VII. CONCLUSION

This work presented and discussed a complete system that

is able to reconstruct, calibrate and track industrial scenarios.

The main advantages and drawbacks of this procedure

were analyzed based on its results at the ISMAR Tracking

Competition that was used as a validation case study for the

system. Besides that, this paper provides a comprehensive

analysis of several aspects related to the development of a

tracker system for industrial scenarios. Thus, this article can

help other researchers and developers that are engaging in a

similar task.

As future work, it is fundamental to improve the

calibration phase of the system. Wrong calibration can lead

to tracking failures and imprecision. The use of more point

correspondences or more images in which the points are

visible may produce a better result.

In order to improve the tracking phase, the system can

employ an edge based technique that will help to achieve a

more stable multi-feature tracking (edge + texture). In case

of using a mobile device as an interface for the system, the

tracking quality can be improved by taking advantage of the

device sensors, such as the inertial, GPS or magnetometer.
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