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Abstract

Tracking is an important task that is used for several applications, such as navigation assistance

and augmented reality. The improvement and popularization of mobile devices in recent years allowed

these applications to be executed on such devices, which provides a mobility that is not possible on desktop

computers. Although there is an improvement in both tracking techniques and mobile devices, there are still

several challenges in this field. In this sense, the goal of this Ph.D. is to investigate methods to perform tracking

on mobile devices considering the characteristics of such platform.

To achieve this goal, the first step was to conduct a systematic mapping on tracking for mobile devices

in order to classify the area and identify the state of art methods as well as the gaps. This study collected

2,602 papers from three scientific databases using an open-source crawler, from which 444 were selected to

be classified according to four properties: tracking type, degrees of freedom, tracking platform and research

type. The results indicated a growing interest in this field. It showed that most works use the device’s sensors

for tracking in location-based applications and almost all of them calculate a 2D or 2D + θ pose. Beyond that,

there is a clear preference for systems that calculate the pose locally on the device and only a few use a remote

server to assist in this task. However, it was not found any work that extracts semantics on such devices.

The mapping was used to elaborate preliminary experimental scenarios aiming to create a practical

knowledge on the specificities of developing tracking techniques for mobile devices. First, the Google Tango

platform was evaluated to establish a ground base of the state-of-the-art trackers. It was observed that

the precision in indoor spaces is suitable to provide a good user experience, including for augmented

reality applications. Another experiment evaluated the use of parallelism, distributed approach and native

implementation. This test showed that using parallel implementation was faster, but it required more memory

than any other architecture whereas the distributed approach has the opposite results. On average, native

development was the most efficient. Besides that, experiments were designed intending to test different tracking

techniques that the systematic mapping indicated to be suitable for mobile devices. One is a face tracking

technique using machine learning and local binary features. This algorithm was adapted to consider the

characteristics of mobile devices and it runs in approximately eight milliseconds on such equipments. However,

the size of the training file can be a limiting factor for the use of this type of method on mobile devices. The

other one is a SLAM technique that was developed in desktop and evaluated in the challenging scenario of

the ISMAR Tracking Competition. Additionally, STAM was ported to a Tango tablet device. The mobile version

was evaluated in comparison with the desktop implementation and it proved to be slower than its desktop

counterpart.

There were several lessons learned from the experiments. One of them was the importance of finding

high-level semantic information from a scene, which can improve tracking and provide more realistic rendering.

In this Ph.D., it was developed a technique that incrementally detects and tracks primitives using the generating

process of point clouds of visual SLAM systems, called Geometric and Statistical Incremental Semantic Tracker

(GS-IST). The main idea of this approach consists in taking on every keyframe the sparse point map created by

a visual SLAM system to detect basic primitives using a batch-based method. These primitives are planes,

spheres and cylinders. Then, it uses the parameters of the shapes found to fuse all the primitives belonging to

an object into one in order to improve their representativeness and reliability. After that, the detected shapes

are matched with those previously found. To do this, it is used the intersection of the 3D bounding box and the

distance between the center of mass of these primitives. Later, it verifies if the current estimation is following



the detection history over time. If the current shape has a type that is different from the one that appears most

of the time, it is updated to that class of primitive. Moreover, if a shape that was not detected on the current

keyframe appeared previously, the system can recover that shape. Finally, the system computes the reliability

of each estimated primitive to suppress incorrect detections in a noisy point cloud. This is done by analyzing

the geometric relationship between the point cloud and the estimated shapes and performing a statistical

evaluation to measure the randomness of the detection over time.

The experiment indicates that GS-IST was able to improve both precision and stability of existing

methods. However, since it focuses on precision, it compromises the recall to ensure the detection and tracking

of correct shapes. One benefit of having the shapes is to improve the representation of the data. In the

experiments performed, it was observed that representing a shape using primitives requires almost nine times

less memory to describe the scene than using the point cloud. Moreover, the evaluation also suggests that it is

possible to segment more than 70% of the point cloud.

In order to evaluate how GS-IST would perform running on mobile devices, it was ported to the Android

platform and evaluated using two distinct phones. The evaluation showed that the mobile version is 8.5 to 9.9

times slower in comparison with the desktop implementation depending on the smartphone. Moreover, it uses

up to 30.5% of the CPU load, which allows this implementation to run on a separate thread of the main tracking

technique. Additionally, the energy consumption was not a concern because GS-IST can run for more than 4

hours in the worst case. Finally, the memory usage was less than 8% of the total RAM memory of the test

devices, which did not have an impact on the execution time.

Keywords: Semantic tracking, visual SLAM, mobile devices, tracking, Android.



Resumo

Rastreamento é uma atividade importante usada em várias aplicações, como auxílio à navegação e

realidade aumentada. Atualmente, estas aplicações podem ser executadas em dispositivos móveis graças à

popularização e à melhoria desses aparelhos, dando uma mobilidade que não é encontrada nos computadores.

Apesar das melhorias tanto nos dispositivos como nas técnicas de rastreamento, ainda existem problemas em

aberto nessa área. Dito isto, o objetivo desta pesquisa de doutorado é o de investigar métodos para realizar

rastreamento em dispositivos móveis considerando as características desta plataforma.

Para atingir esse objetivo, primeiramente foi conduzido um mapeamento sistemático sobre rastreamento

para dispositivos móveis com o objetivo de classificar a área e identificar as técnicas mais recentes e suas

limitações. Este estudo coletou 2.602 artigos de três bases de dados científicas usando um buscador de

código aberto, dos quais 444 foram selecionados para serem classificados de acordo com quatro critérios: tipo

de rastreamento, graus de liberdade, plataforma de rastreamento e tipo de pesquisa. O resultado mostrou um

interesse crescente na área. A maioria dos trabalhos usa os sensores do aparelho para fazer o rastreamento

em aplicações que provem a localização do usuário e muitos deles calculam uma pose 2D ou 2D + θ . Além

disso, foi observada uma preferência por sistemas que calculam a pose localmente no aparelho e poucos

estudos usam um servidor remoto para auxiliar nessa tarefa. Entretanto, não foi encontrado nenhum trabalho

que extrai semântica nesses aparelhos.

O mapeamento foi usado na criação de experimentos preliminares com o objetivo de adquirir um

conhecimento prático sobre as especificidades de desenvolver técnicas de rastreamento para dispositivos

móveis. Inicialmente, o Google Tango foi avaliado para encontrar um referencial de precisão para os

rastreadores atuais. Foi observado que sua precisão em espaços fechados é adequada para prover uma boa

experiência para o usuário, incluindo aplicações de realidade aumentada. Outro experimento avaliou o uso

de paralelismo, execução distribuída e implementação nativa. Estes testes mostraram que usar paralelismo

deixa a execução mais rápida, mas usa mais memória, enquanto a implementação distribuída tem o resultado

oposto. Na média, a implementação nativa foi a mais eficiente. Além disso, foram criados experimentos para

testar diferentes técnicas de rastreamento identificadas no mapeamento como adequadas para dispositivos

móveis. Uma delas foi o rastreamento de faces usando aprendizagem de máquina e características binárias

locais. Essa abordagem foi adaptada considerando as limitações dos dispositivos móveis e é executada em

aproximadamente oito milissegundos nesses aparelhos. No entanto, o tamanho do arquivo de treinamento

pode ser um fator limitante para o uso deste tipo de método em dispositivos móveis. O último experimento

está relacionado com uma técnica de SLAM (sigla em inglês para Localização e Mapeamento Simultâneos)

chamada STAM. Ela foi desenvolvida para desktop e avaliada na competição de rastreamento do ISMAR.

Posteriormente, o STAM foi portado para um aparelho com suporte ao Google Tango. A versão móvel foi

comparada com a implementação desktop e mostrou-se mais lenta.

Várias lições foram aprendidas a partir dos experimentos. Uma delas foi a importância de encontrar

informações de semântica de alto-nível de uma cena, que podem ser usadas para melhorar o rastreamento

ou criar renderizações mais realísticas. Neste doutorado foi desenvolvida uma técnica que detecta e rastreia

primitivas geométricas de maneira incremental usando o processo de geração de nuvens de pontos dos

sistemas de SLAM, chamada GS-IST (sigla em inglês para Rastreador Semântico Incremental Geométrico

e Estatístico). Em cada quadro-chave, essa abordagem acessa o mapa criado pela técnica de SLAM e

detecta as primitivas usando um método não-incremental. Essas primitivas são planos, esferas e cilindros.



Em seguida, ela usa os parâmetros das formas encontradas para combinar as primitivas que pertencem

ao mesmo objeto de modo a aumentar sua representatividade e confiabilidade. Depois disso, as primitivas

são relacionadas com aquelas encontradas em instantes anteriores. Para isso, é usada a intersecção do

invólucro dos pontos e a distância do centro de massa dessas primitivas. Posteriormente, o sistema verifica

se a estimativa atual da primitiva é a mesma da sua detecção através do tempo. Caso não seja, a técnica

atualiza a forma geométrica para estar de acordo. Além disso, se uma primitiva que aparecia antes não foi

detectada, ela pode ser recuperada. Por fim, se calcula a confiabilidade de cada forma geométrica encontrada

para suprimir aquelas que são incorretas dada uma nuvem de pontos ruidosa. Isto é feito a partir da análise

da relação geométrica entre a nuvem de pontos e as primitivas estimadas, além de uma avaliação estatística

para medir a aleatoriedade da detecção através do tempo. A avaliação do sistema indicou que o GS-IST foi

capaz de melhorar a precisão e a estabilidade dos métodos existentes. Porém, como o foco está na precisão,

a técnica peca na revocação para garantir a detecção e rastreamento das primitivas corretas. Um benefício

de ter formas geométricas parametrizáveis é que ela melhora a representação dos dados. Na avaliação foi

observado que o uso de memória com esta representação é quase nove vezes menor do que representar a

cena usando apenas a nuvem de pontos. Além disso, a avaliação mostrou que é possível segmentar mais de

70% desses pontos.

Para avaliar como o GS-IST se comportaria sendo executado em dispositivos móveis, ele foi portado

para a plataforma Android e avaliado usando telefones distintos. A avaliação mostrou que a versão móvel

é, dependendo do aparelho, de 8,5 a 9,9 vezes mais lenta quando comparada com a implementação em

desktop. Mais do que isso, ele usa até 30,5% da capacidade da CPU, permitindo que esta implementação

possa ser executada em uma thread separada da técnica de rastreamento. Além disso, o consumo de energia

não foi uma preocupação, uma vez que o GS-IST pode ser executado por mais de 4 horas no pior cenário.

Finalmente, o uso de memória RAM foi inferior a 8% do total disponível nos aparelhos testados, o que não

apresentou nenhum impacto no tempo de execução.

Palavras-chave: Rastreamento semântico, SLAM visual, dispositivos móveis, rastreamento, Android.
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1
Introduction

Several applications require tracking, which is the computation of an object placement relative to a

real world element or location over a time period. For instance, some augmented reality software use the

camera position related to a marker to display a virtual content registered with the pattern (Roberto et al. 2013).

Another example is a GPS-based navigation system that calculates its location relative to the road in order to

show the driver directions to a destination (Leshed et al. 2008), seen in Figure 1.1 (a). However, this is still a

challenging task. Moreover, determining this placement can demand a lot of computational power and memory

depending on the approach and the required information.

Figure 1.1: Example of mobile applications that need tracking to deliver experience to the users.

Mobile devices, such as phones and tablets, are becoming increasingly popular. Research shows that

a median of 43% of the world’s population owns a smartphone (Pew Research Center 2016). Moreover, these

devices are continuously improving regarding processing power and memory space available (Halpern et al.

2016), which makes them powerful enough to perform complex tasks, such as tracking. In fact, the processing

power on mobile devices is increasing rapidly enough to reduce the gap with desktop computers. While in

2009 the desktop CPU clock frequency was 5.7 times the mobile CPU clock, in 2015 this distance dropped

to 2.1 times. This scenario favors the creation of numerous types of applications since such devices create

several opportunities that are only possible when the user can be mobile. One example is to annotate relevant

information precisely on the facade of buildings in an outdoor environment (Yovcheva et al. 2012), as illustrated

in Figure 1.1 (b).

Besides all the improvement on the mobile devices itself, several tracking techniques that are capable

to run on such devices were released in the last couple of years. There are examples in the academy and
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in the industry. The most distinguished were the ARCore1 and ARKit2, by Google and Apple and shown in

Figure 1.1 (c) and (d) respectively. However, there are still several gaps in the field that can be illustrated with

a challenging scenario, such as creating a 3D model of an entire house in order to redecorate it. Tracking

an environment that is so large demands manipulation of a large amount of data, which impacts both the

processing power, especially because the architecture of mobile processors compromise on speed to be more

efficient on energy consumption and on temperature. Although memory is not so limited on these devices

nowadays, using algorithms such as bundle adjustment can be an issue in a scenario like this. Additionally, the

walls must be aligned in order to correctly recreate all the rooms. And in each room there are several objects

that also need to be recognized and modeled, such as tables, sofas and wardrobe.

This particular scenario presents several research opportunities and one is extracting and tracking

high-level semantic information. Several types of semantic can be collected, from the geometric primitives of

the objects to the model of a piece of furniture and this process is referred to as semantic modeling. Shape

parameters of geometric primitives and the relationship between them are valuable knowledge to be estimated

especially in human-made environments such as a house. These semantics are useful for replacing redundant

point clouds with more efficient data structures or aligning the walls based on their parameters. This data can

also be gathered in different ways: from the input image, the scene map or a combination of both.

1.1 Objectives

In this sense, the objective of this Ph.D. thesis is to investigate methods to perform tracking on

mobile devices considering the characteristics of such platform.

In order to achieve this goal, four specific objectives should be met. The first one is to perform a

strong literature review of tracking for mobile devices to find relevant studies and gaps. One effective

way to analyze the related works of a research area that has so many studies is through a systematic mapping,

which is a research method to review, classify and provide an overview of a wide range of papers on a particular

topic. Chapter 2 describes how the systematic mapping was performed in this work and presents its major

findings.

The second specific objective of this Ph.D. is to determine experimental scenarios aiming to acquire

a practical knowledge on the specificities of developing tracking techniques for mobile devices, which

are based on the results of the systematic mapping. The goal is to evaluate different tracking approaches

for mobile device in order to assess a state-of-the-art tracking method and find an efficient architecture for a

computer vision system on mobile devices. Additionally, test different tracking techniques to decide which ones

are suitable for such devices and which ones are not, as explained in Chapter 3.

The lessons learned from both the systematic mapping and the experiments were the foundation to

create a semantic tracking technique for sparse visual SLAM, which is the third specific objective of this

Ph.D. This approach incrementally detects and tracks primitive shapes using geometric and statistical analyses.

Chapter 4 details this method and presents the evaluation results.

And last but not least, the fourth specific objective of this study is to port the semantic tracking

approach to mobile devices and evaluate how it performs running on such platforms. Chapter 5 shows

the different criteria used to evaluate this technique and discusses the implication of the results.

1https://developers.google.com/ar/
2https://developer.apple.com/arkit/

https://developers.google.com/ar/
https://developer.apple.com/arkit/
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2
Systematic Mapping

During the past years, researchers have proposed different techniques to perform tracking on mobile

devices. A preliminary search for related works revealed a significant amount of papers in this area. Therefore,

it becomes important to summarize the current state of the art and provide an overview of the trends in this

specialized field. In order to address this issue, it was performed a systematic mapping of the literature in this

area. The main goal of this mapping is to analyze, classify and map existing papers about tracking for mobile

devices, providing a primary study and an inclusive overview of this topic. The result of the systematic mapping

was published in (Roberto et al. 2016c), and an update of this study is detailed in sequence.

Systematic mapping is a method to review, classify and structure papers related to a specific research

field (Petersen et al. 2008). It is frequently used in medical research and lately has been applied to software

engineering. Unlike systematic reviews, the goal of this research method is not to perform a deep analysis

of works in order to identify the best practices of a field, which usually includes a quality evaluation. The aim

of a systematic mapping is to provide an overview of a wide range of papers. This broader analysis enables

to observe more studies, which allows more general conclusions (Petersen et al. 2008). Nevertheless, both

methods use a well-defined methodology, which reduces bias (Keele 2007). Moreover, systematic mapping

papers have an educational value to provide valuable information for students and young researchers, being a

useful first step for Ph.D. candidates (Kitchenham et al. 2010).

To the best of the author’s knowledge, there is currently no study that synthesizes or systematically

analyzes, classifies and maps existing papers about tracking for mobile devices. However, some surveys

were found on the field or one of its specific subareas. For instance, (Liu et al. 2007) evaluated wireless

indoor localization techniques and (Lane et al. 2010) listed tracking algorithms for mobile phones that use

only their sensors, as well as related applications. There are also surveys regarding mobile augmented

reality, in which tracking is an important step. Examples are (Olsson et al. 2011) that studied the overall

acceptance and user experience of mobile augmented reality consumer applications, (Huang et al. 2013b)

that presented the technologies and methods to perform augmented reality on mobile devices and introduces

some applications, and (Grubert et al. 2011) that conducted a survey about augmented reality browsers and

performed a quantitative and qualitative analysis regarding the usability aspects of these tools.

As a definition, tracking for mobile devices means that an off-the-shelf cell phone or tablet extracts

information from the environment and then processes it locally or remotely in order to compute the device’s

pose related to the world, which will be used by an application or a service on the device itself.

2.1 Methods

The systematic mapping was conducted based on the process proposed by (Petersen et al. 2008) and

illustrated in Figure 2.1 in which a list of research questions is proposed, which guides the search strategy, the

definition of inclusion and exclusion criteria for relevant studies and the classification schema of all the selected

studies. The process steps performed in this study are described in the following subsections.
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Figure 2.1: Systematic mapping process. The research question guides the definition of the search
strategy, which is used to collect the works. Some criteria are defined to select the relevant studies that

are classified in order to provide the systematic mapping.

2.1.1 Research Questions

The goal of this systematic mapping is to provide an overview of the current research on the topic of

tracking for mobile devices. The overall objective was defined in the following four research questions:

RQ1 How has the frequency of research on tracking for mobile devices changed recently?

RQ2 What are the most common approaches of tracking for mobile devices?

RQ3 In which platforms has tracking for mobile devices been executed?

RQ4 In which forums has research on tracking for mobile devices been published?

The first question aims to use the number of publications to investigate trends of the field in the past

few years. The second and third questions explore the approaches and platforms researched in the field. The

objective of the fourth question is to identify where tracking for mobile devices research can be found, which

could be targets for the publication of future studies.

2.1.2 Scientific Databases and Search Strategy

Three online academic search engines were used to find the relevant papers:

� ACM Digital Library;

� IEEE Xplore Digital Library;

� ScienceDirect.

In order to perform an automatic search on the selected libraries, the search string consisted of two

parts. The former regards the tracking domain and the later covers the device used. Thus, the search string

was the following:

(“tracking” OR “registration” OR “localization”)

AND

(“phone” OR “tablet” OR “handheld” OR “smartphone”)

Tracking is the key term of the first segment and the other ones are its most used synonyms. Other

terms were not used because a preliminary analysis showed that the majority of the papers found would

not be selected for classification. An example is “positioning”, which appears mostly in studies in which the

device’s pose is used only by an external agent and not on the device itself, such as the phone’s position that is



2.1. METHODS 25

employed by the carrier to determine in which GSM antenna it will connect to. Moreover, the analysis revealed

that the relevant papers were already found using the chosen terms.

Regarding the second segment, it was chosen to search for each device instead of using the terms

“mobile” or “mobile device”. The reason is that these keywords returned too many papers and a preliminary

analysis revealed that the vast majority of them use a broader concept of mobile devices than the desired in

this mapping. For instance, some works use the term “mobile objects” for objects with sensors embedded that

are tracked by computers. There are also several references to mobile device as a large object that is used for

tracking-related activities, such as airplane radar or medical scanner, which was shrunk to become mobile.

Therefore, using the types of mobile device as search terms showed to be more efficient.

An automatic search was performed in the aforementioned databases using an open-source paper

crawler1 software and applying the search in the title, abstract and keywords. The crawler was developed

during this Ph.D. and aims to automate the process of retrieving papers. Hence, the crawler accesses the

digital libraries, performs the search using the search strings, collects the papers, eliminates duplicate versions

and creates a worksheet containing all the works with their title, year, source, abstract and web address.

2.1.3 Screening of Papers

After collecting the papers, the crawler automatically remove duplicate works. Whenever a work had

multiple publications, only the most complete version was selected and the other ones were removed as

duplicates. Later, relevant papers were manually selected using the following inclusion and exclusion criteria.

� Inclusion criteria:

� Papers about tracking techniques implemented on mobile devices;

� Papers about mobile applications that use existing tracking techniques, even if they do

not explain how tracking was implemented.

� Exclusion criteria:

� Papers published before 2009, which is one year after the release of phone models that

allowed 3rd party development;

� Papers not written in English language;

� Papers published on non-peer reviewed vehicles, such as books and magazines;

� Papers not related to tracking techniques on mobile devices;

� Papers about tracking techniques that were implemented only on desktop platform and

that have no indication of how they can be developed for mobile devices.

2.1.4 Classification

Following, all included papers were classified according to four properties in order to answer the

research questions. They are detailed next.

2.1.4.1 Tracking Type

Each paper was classified regarding its tracking type. The classification was adapted from (Zhou et al.

2008), which is shortly explained as follows and illustrated in Figure 2.2.

1Available at https://goo.gl/7t8kG8

https://goo.gl/7t8kG8
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� Sensor-Based Tracking: techniques that calculate device’s pose relative to real world using

exclusively non-vision based sensors. This approach can be divided in two categories: single

sensor, which uses only one sensor for tracking, and sensor fusion, which uses different sensors

to perform the same task;

� Vision-Based Tracking: techniques that use images captured by the device cameras to calculate

pose relative to the real world. This approach can also be divided in two categories: marker-based

and natural feature-based. The former method calculates device’s pose from artificial markers

placed in the scene and the latter performs the same task using natural characteristics from the

environment, such as points and edges. The natural feature-based approach was also split into

two subcategories: static model and dynamic model. The first one uses prior knowledge of the

scene that does not change during tracking to compute device’s pose and in the second one the

tracker can use an initial model if it is available or build it entirely from scratch and this environment

information is updated during computation of the device’s pose;

� Hybrid Tracking: techniques that combine sensor-based and vision-based methods to calculate

device’s pose;

� Several: papers that present techniques from several categories, such as surveys.

Figure 2.2: Tracking type classification diagram.

2.1.4.2 Degrees of Freedom

This property details the degree of freedom required to compute the information desired. This

classification was based on (Normand et al. 2012). One modification was the addition of the 3D degree of

freedom, which was not mentioned in the original work. Thus, the complete degree of freedom classification

used in this work is detailed in the following list.

� 0D: techniques that detect a pattern and display an information about it without any relationship

with its position and orientation;

� 2D: techniques that provide information about the position, being indoor, outdoor or in the screen.

It can also be called “2D Location”;

� 2D + θ : techniques that extend the position information with orientation, providing the location with

direction. It can also be named “2D Location + Orientation”;
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� 3D: techniques that compute the device’s rotation in all three axis;

� 6D: techniques that calculate the device’s pose with rotation and translation. Systems that also

compute scale were considered 6D as well;

� Several: papers that present techniques from several categories.

2.1.4.3 Tracking Platform

Two tracking platforms were considered to classify papers regarding this property, as detailed below.

� Local Tracking: techniques that compute all the required information at the mobile device;

� Distributed Tracking: techniques in which part or all the information is calculated on a server and

the result is transmitted to the device and used to display the content;

� Several: papers that present techniques from both categories.

2.1.4.4 Research Type

The research type feature concerns the research approach used in the papers. This classification was

adapted from (Wieringa et al. 2005) and is summarized in the list below.

� Evaluation Research: papers that present implementation and extensive evaluation of existing

techniques in order to determine their benefits and drawbacks;

� Opinion Papers: publications in which the author expresses a personal opinion whether a certain

topic is good or bad without relying on related work;

� Philosophical Papers: papers that present new ways of looking at existing things, such as

structuring the field in form of a new taxonomy;

� Proposal of Solution: works that propose solutions for problems, which can be based on novel or

existing techniques;

� Survey Papers: papers that summarize and organize a research field based on other publications;

� Technique Research: publications in which the authors propose and implement a novel technique.

2.1.5 Threats to Validity

It is important to consider threats to validity in order to judge the systematic mapping strengths and

limitations. The main issues are related to incomplete sets of relevant papers and researcher bias with regards

to inclusion/exclusion criteria and classification.

Limitations with search string, scientific databases and search strategy can result in an incomplete set

of relevant papers. As a way to mitigate that risk, three strategies were used. In order to validate the search

string, the terms were discussed with five other experienced researchers in the field of tracking. The scientific

databases that publish works from the most important conferences and journals in the area were selected. As

for the search strategy, a different approach was used to maximize the number of papers found. Instead of

using the complete search string, twelve different searches were performed using a two-by-two combination of
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every term in both parts of the search string. Using this strategy, it was possible to retrieve almost 34 times

more papers than when the complete string was employed.

The Ph.D. candidate conducted the analysis to include/exclude and classify a paper. Since this may

lead to a researcher bias, 11.74% of the studies were randomly selected before the subjective part of the

screening phase to compose a set of control papers, and one of the co-advisors, which is a experienced

researcher in the field of tracking, analyzed them. The results were compared using the Cohen’s Kappa

coefficient, which measures the agreement between the two classifications taking into account how much

agreement would be expected to be present by chance (Cohen 1960). The coefficient lies between -1.0 and 1.0

in which 1.0 denotes perfect agreement, 0.0 indicates that any agreement is due to chance and negative values

present agreement less than chance. Cohen’s Kappa was used to measure the reliability regarding inclusion

and exclusion of papers and the classification of the included papers in common according to the classification

schema. There is no consensus on what are good levels of agreement. Nevertheless, a common scale (Altman

1990) indicates that there is no agreement for negative values, poor agreement between 0.00 and 0.20, fair

agreement between 0.21 and 0.40, moderate agreement between 0.41 and 0.60, good agreement between

0.61 and 0.80 and very good agreement for values higher than 0.80. At first, the classification ratio was in the

range of good agreement. The main reason for that was the fact that the first classification schema was leading

to dubious interpretations. For instance, natural feature tracking was divided into model-based and model-less

approaches, in which it was not clear if information used could be considered a model or not. The classification

schema was refined to the one previously presented, which uses a more straightforward classification, and all

papers were then reclassified. Thus, the included/excluded papers Cohen’s Kappa coefficient was 0.8062 ±
0.0495 and the Cohen’s Kappa classification was 0.8345 ± 0.0303.

2.2 Results

The search was made on March 3rd, 2016 and resulted in 2,602 papers found. As can be seen in

Figure 2.3, 611 papers were removed for being duplicated and 1,991 studies were available for the subjective

steps of screening. Only 444 works remained for trends analysis and classification.

Figure 2.3: Selection process shows the number of papers included and excluded and the reasons for
exclusions.

Figure 2.4 shows the annual trend of papers. It is possible to see that the number of studies is growing

between 2009 and 2014. Even with a reduction in the number of publications in 2015, there is an indication of

increasing interest in tracking for mobile devices in recent years.
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Figure 2.4: Publications over time. Annual trend of included papers.

The 444 papers were published in 260 forums. As seen in Table 2.1, almost a quarter of all works

came from the top 12 venues. ISMAR is the flagship event in the field with 30 studies. Preferable targets for

such papers are conferences and symposiums in which 196 papers were published. They were followed by 52

journal works and 12 workshop studies.

Each paper was classified according to the scheme presented in the previous section. The full list of

works can be accessed through an open-source web application (Figueiredo et al. 2015). Using this system,

it is possible to filter the papers according to the year when the works were published and the classification

criteria, as well as search for terms and words in the abstract. Moreover, collaborators can send new entries of

studies about tracking for mobile devices, which will be revised and then added to the online data set. The web

application can be accessed at http://cin.ufpe.br/~rar3/tracking_sm/.

Table 2.1: List of the most popular publication forums.

Forum Acronym
Type of
Forum

Number
of Papers

Percentage
of the Total

International Symposium on Mixed
and Augmented Reality

ISMAR Symposium 30 6.76%

International Conference on Indoor
Positioning and Indoor Navigation

IPIN Conference 19 4.28%

Conference on Embedded Networked
Sensor Systems

SenSys Conference 7 1.58%

International Conference on Mobile
Computing and Networking

MobiCom Conference 6 1.35%

Pervasive and Mobile
Computing

- Journal 6 1.35%

IEEE Transactions on Mobile
Computing

- Journal 5 1.13%

IEEE Virtual Reality Conference IEEE-VR Conference 5 1.13%
International Conference on
Computer Vision

ICCV Conference 5 1.13%

Conference on Multimedia and Expo ICME Conference 5 1.13%
International Conference on
Pervasive and Ubiquitous Computing

UbiComp Conference 5 1.13%

Int. Conference on Pervasive
Computing and Communications

PerCom Conference 5 1.13%

Symposium on 3D User Interfaces 3DUI Symposium 5 1.13%
Other 248 Forums - - 341 76.80%

http://cin.ufpe.br/~rar3/tracking_sm/
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2.3 Mapping

From the classification of the studies it is possible to establish a mapping that aims to provide an

overview of tracking for mobile devices and can help to identify potential research gaps. This map gives the

distribution of works for each classification criteria, their annual trends and the relation between them.

2.3.1 Classification Distribution

It is possible to see in Figure 2.5 that most of the works, such as (Ando et al. 2014), rely on a

combination of the devices’ sensors to calculate pose, and that marker-based tracking, which is used for

example in (Oui et al. 2011), is the least used method for the same task. Moreover, it can be noted that

vision-based methods like (Wagner et al. 2010a) are present in three out of ten papers.

Figure 2.5: Tracking type distribution over the database.

Table 2.2 lists the sensors used on each paper in which the tracking type is hybrid or based on sensors

as well as the number of studies that uses them. Several works fuse different sensors and Table 2.2 also lists

the 13 most common combinations.

Regarding the degree of freedom found in the works, several of them calculate a 6D pose (Hagbi et al.

2011), as shown in Figure 2.6. However, in 58.5% of the studies, a 2D position is computed. In some papers,

a 2D position on the screen is found (Song et al. 2011), but the majority discovers this 2D position on the

environment (Hu et al. 2010). In the latter case, more works also find the orientation θ (Shin et al. 2012a), and

the least common papers are the ones aiming 0D systems (Teraura et al. 2012).

In the majority of the works all the processing needed to calculate a pose is done at the device (Engelke

et al. 2013). Only 14.0% use a remote server to assist in this task (Ventura et al. 2012) or completely perform

pose calculation (Ha et al. 2011), as illustrated in Figure 2.7.

Table 2.3 lists relevant studies for each classification, those with more citations per year.

As for research type, approximately two thirds of the papers propose a new technique to perform

tracking (Shanklin et al. 2011) and 28.6% use an existing method to develop a mobile solution that requires

tracking (Polo et al. 2014), as can be seen in Figure 2.8.

2.3.2 Classification Trends

The annual trend per tracking type shows that until 2015 the number of papers about sensor-based

systems is increasing. Moreover, the number of works that use a single sensor in 2015 is almost 5 times higher
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Table 2.2: List of sensors and their most used combinations.

Sensor
Number

of Papers
Combination of Sensors

Number
of Papers

Accelerometer 137 Wi-Fi 40
Magnetometer 98 GPS 36

Wi-Fi 97
Accelerometer, Gyroscope
and Magnetometer

26

GPS 96 Accelerometer and Gyroscope 22
Gyroscope 90 Accelerometer 11

Cellular Network (GSM, CDMA) 32
Accelerometer, Gyroscope,
Magnetometer and Wi-Fi

11

Acoustic 19
Accelerometer and
Magnetometer

9

Barometer 10 GPS and Wi-Fi 8
Bluetooth 10 Cellular Network 8
Depth 6 Cellular Network and GPS 7

Illuminance 3
Accelerometer, GPS
and Magnetometer

7

Thermal 1 Accelerometer and GPS 6
Radio 1 Other 50 combinations 97

Figure 2.6: Degrees of freedom distribution over the database.

than in 2009 and 13 times larger for sensor fusion techniques, as can be seen in Figure 2.9. From Figure 2.9

(top) it is also possible to conclude that the other tracking types have an overall growing tendency. From 2009

to 2015 natural feature solutions went from 3 works to 8 with static model studies and 3 to 8 with dynamic

model papers. On the same period, hybrid solutions went from 0 to 20 studies and it was the only tracking type

that had more publications in 2015 than in 2014. The growth of marker studies occurred in the last three years.

Regarding the annual trend per degree of freedom, it is possible to see in Figure 2.10 an increasing

number of publications about 0D, 2D, 2D + θ and 6D trackers. Respectively, they went from 0 to 5, 4 to 27, 1 to

22 and 7 to 27 between 2009 and 2015. The image also shows that the community did not demonstrate the

same interest in systems with a 3D approach.

Most of the works use a local approach to calculate the device’s pose and this fact is reflected in the

annual trends per tracking platform, as shown in Figure 2.11.
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Figure 2.7: Tracking platform distribution over the database.

Table 2.3: Relevant papers for each classification.

Tracking Type Relevant Studies
Hybrid (Kurz et al. 2011) and (Ventura et al. 2012)
Single Sensor (Shin et al. 2010) and (Gozick et al. 2011)
Sensor Fusion (Chon et al. 2012) and (Zhang et al. 2013)
Static Model (Wagner et al. 2010a) and (Hu et al. 2013)
Dynamic Model (Klein et al. 2009) and (Wagner et al. 2010b)
Marker (Oui et al. 2011) and (Gherghina et al. 2013)
Degree of Freedom Relevant Studies
0D (Rai et al. 2012) and (Xu et al. 2014)
2D (Shin et al. 2010) and (Lv 2013)
2D + θ (Schall et al. 2010) and (Shin et al. 2012b)
3D (Li et al. 2013) and (Elloumi et al. 2013)
6D (Takacs et al. 2010) and (Tanskanen et al. 2013)
Tracking Platform Relevant Studies
Local (Arth et al. 2009) and (Schöps et al. 2014)
Distributed (Chen et al. 2009) and (Ventura et al. 2014)

2.3.3 Classification Relationship

The relationship between the classifications can provide a powerful and quick overview of tendencies

on tracking for mobile devices. A bubble chart was used because it offers a more visual result than tables.

Figure 2.12 presents a bubble plot in two dimensions in which the leftmost represents the tracking type by

tracking platform and the rightmost displays the tracking type by degree of freedom. It should be noted in

the first dimension that the ratio of publications of local systems is at least four times larger than the ratio of

distributed approaches.

The same balance cannot be seen in the second dimension, in which the majority of the sensor works

are location-based solutions, such as (Michael et al. 2013) that compute a 2D pose and (Jung et al. 2011) for

2D + θ papers. Only three publications present a system that computes a 6D pose using only a combination of

the device’s sensors. One example is (Robinson et al. 2012), in which the authors append a pico projector to a

mobile device in order to make projective drawings on the wall. The approximated position is computed in a

calibration step using the sensors, in which the user has to move the device according to a projected guide. All

112 2D works that use sensors to compute the pose are location-based systems, as well as all three marker
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Figure 2.8: Research type distribution over the database.

papers, such as (Raj et al. 2013), seven of the hybrid works, like (Santos et al. 2013), and four of the static

model studies, such as (Nguyen et al. 2010). All the other 29 works compute a 2D position on the screen, as

in (An et al. 2011).

Single sensor and sensor fusion systems are the only two tracking types in which a 6D pose is not

the most common information required. For all other tracking types at least 58.8% of the papers are about a

system that calculates a full rotation and translation pose, as exemplified in (Issartel et al. 2014; Herling et al.

2012; Pirchheim et al. 2013; Kurz et al. 2012). Additionally, the dynamic model and sensor fusion techniques

are the only tracking type that has at least one paper for every degree of freedom.

The bubble chart in Figure 2.13 presents the same dimensions of Figure 2.12. The difference is that it

combines the vision-based and sensor-based techniques. Additionally, it also combines both location-based

solutions. These combinations make more evident that most of the vision-based techniques calculate a 6D

pose and that the majority of the sensor-based approaches are location-based services. Regarding the first

dimension, it is possible to see that the ratio between the number of local and distributed solutions for each

tracking type stays almost the same.

The relationship of degree of freedom by tracking platform is shown in Figure 2.14. The chart shows

that for every degree of freedom category more than 80% of the publications are local. Moreover, all works that

compute a 0D detection are local, such as (Ullah et al. 2012).

2.4 Discussion

Figure 2.4 shows that, even though the amount of publications in 2015 was smaller than in 2014,

overall the number of papers about tracking on mobile devices is increasing over the years. There were almost

6.5 more works in 2015 than in 2009 and it is due to the improvement (Halpern et al. 2016) and popularization

(Pew Research Center 2016) of such devices in recent years.

It is possible to see in Figure 2.9 (top) that there was an increase of more than two and a half times in

the number of publications for all tracking types between 2009 and 2015. There is also a growth of vision-based

works, as shown in Figure 2.9 (bottom). These data indicate that this type of tracking becomes possible with

the improvement of the computational power of devices, especially for natural feature tracking.

Figure 2.9 also shows that sensor fusion tracking had the biggest growth in the analyzed period. It

is also possible to note in Figure 2.5 that the majority of works use this type of tracking. Moreover, 49.1%
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Figure 2.9: Annual trend per tracking type. Trends of all tracking types (top); yearly evolution of
tracking types combining all vision-based and sensor-based techniques (bottom).

of all studies do not rely on the camera to perform tracking. This is probably because it is the most suitable

approach to compute a pose for location-based solutions, which use 2D and 2D + θ information, and this type

of solution is one of the most common type of application for mobile devices. This relationship is emphasized in

Figure 2.12 and Figure 2.13. Nevertheless, it should be observed that only three works use only sensors to

compute a full 6D pose because of their technical limitation, such as noise and error accumulation.

The analysis revealed that 41.3% of all sensor papers use data from only one sensor to compute

the device’s pose. The other 58.7% perform tracking using a combination of different sensors. This fusion of

sensors is important because it allows using the data from one sensor to overcome the weakness of another

one. Moreover, all studies that use a single sensor are 2D or 2D + θ , as can be seen in Figure 2.12. The

nine papers that use sensors to compute a 3D or 6D pose require a combination of them in order to perform

tracking. As seen in Table 2.2, the two most common sensors, accelerometer and magnetometer, are popular

because they can be used in combination with other sensors in both indoor and outdoor situations since they

do not require any external infrastructure, such as access points. The two sensors that follow them are related

to providing the device’s position. Wi-fi is widely used to compute indoor position. Although noisy, GPS is a

great way to determine outdoor localization.

Figure 2.13 shows a clear trend that relates sensor techniques to location-based systems and

vision-based approaches to solutions that require a 6D pose. Moreover, it is possible to see in Figure 2.5 that

static model tracking is the favorite among natural feature-based approaches. However, there is a significant

amount of systems that use a dynamic model technique. One reason is that some works use learning algorithms

to calculate a pose, such as (Lambrecht et al. 2013). These techniques demand a massive processing power

in the offline training phase that can be performed previously in a computer but does not use much processing

for tracking, which makes them more suitable for mobile devices. One advantage of these techniques is that

the trained model is usually refined using the tracking results.
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Figure 2.10: Annual trend per degree of freedom.

Figure 2.11: Annual trend per tracking platform.

There was a huge increase in the number of publications of 2D + θ works, which had a growth of 22

times between 2009 and 2015, as shown in Figure 2.10. Papers with 2D and 6D systems grew almost 7 and 4

times in the same period, respectively, which is also a considerable value. All the other categories present a

consistently small number of papers throughout the years. Moreover, Figure 2.6 shows that 2D techniques are

the most common ones. The main reason for this is that there is a high demand for location-based applications

and the amount of publications reflect this. 6D systems are also very popular because it is the most traditional

information required for tracking, especially for augmented reality systems. The fact that the majority of papers

of every tracking type except single sensor and sensor fusion calculate a 6D pose reflects the importance of

computing the rotation and translation of the device relative to the real world, as observed in Figure 2.12. This

approach is interesting because it combines the benefits of both vision and sensors to perform a more accurate

and robust tracking. It is also possible to see in Figure 2.6 that 0D and 3D approaches are the least common.

This is due to the fact that there is a small number of applications that require a 0D or 3D pose.

Even with the devices’ limitations, Figure 2.7 shows that the majority of works execute all the steps to

compute the pose at the device. One reason is the lack of a good communication infrastructure to transfer

the data to a remote server. However, it can be noted in Figure 2.11 that more than half of the distributed

works were published in the last three years. This can be an indication that there is a recent improvement in

the network infrastructure and researchers are exploring the use of a remote computer, which provides more

resources than the mobile device, such as processing power, memory and storage space. Another reason is

the possibility of using sensors and cameras that are not available in the device (Bai et al. 2013).

Figure 2.12 indicates that there is no relationship between the tracking type and the execution platform

since the proportion of local and distributed works varies little per tracking type. However, the same proportion



36 CHAPTER 2. SYSTEMATIC MAPPING

Figure 2.12: Two dimensional bubble chart: left side presents the tracking type by tracking platform
and the right side presents the tracking type by degree of freedom.

Figure 2.13: Two dimensional bubble chart: left side presents the combined tracking type by tracking
platform and the right side presents the combined tracking type by degree of freedom with location

service systems combined.

is not seen when relating tracking platform with degree of freedom. It is possible to see in Figure 2.14 that a

few more than 80% of 6D papers are local while none 0D and only one 3D study is distributed.

As seen in Figure 2.8, the majority of the papers propose a new technique and there are also several

works that use an existing method to create a solution for an open problem. These two research types represent

93% of all studies classified. This is an indication that the demand for systems that use tracking is high. More

than that, it is a clear suggestion that the field of tracking for mobile devices still has a lot of open problems to

tackle.

2.4.1 Implications for Future Studies

This mapping study not only offers useful information for researchers who are interested in the existing

works regarding tracking for mobile devices but also identifies gaps in this research topic.

Most of the works calculate the pose using devices’ sensors or computer vision algorithms. However,

there is a tendency to combine both approaches to provide a more robust tracking. It can be noticed in

Figure 2.9 that no hybrid work was published in 2009 and in 2015 the 20 papers that use this type of tracking

represent 23.8% of the studies in this category. It is the highest percentage in the evaluated period. One reason
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Figure 2.14: One dimensional bubble chart of degree of freedom by tracking platform.

is the improvement and miniaturization of more complex sensors and cameras. Following this tendency, Apple

and Google launched their augmented reality platform at the end of 2017, namely ARKit (Apple Inc. 2017)

and ARCore (Google Inc. 2017), respectively. The tracking algorithm on both SDK relies on hybrid techniques.

They use the camera image to extract and track natural features and to perform loop closure, while the inertial

sensors are responsible to recursively update the device position.

Another sensor that achieved this level of maturity regarding miniaturization and integration into mobile

devices is the depth camera. Google’s Tango is another augmented reality platform that combines different

types of sensor to perform tracking (Google Inc. 2014). However, different from ARKit and ARCore that only

use sensors available in most mobile devices, Tango also incorporates a depth and a fisheye camera. These

two cameras play an important role in the development of accurate and robust tracking techniques. As a result,

other kinds of devices, such as DAQRI Smart Helmet (DAQRI 2016) and Microsoft Hololens (Microsoft 2016),

are embedding depth sensors to improve tracking.

This mapping found a few studies focusing on the use of machine learning approaches to compute the

pose. But this is a prominent research area because such algorithms learn what are the best features to be

used for tracking (Tan et al. 2014). Moreover, as mentioned before, learning techniques transfer most of the

computational effort to an offline training phase while the tracking itself demands few processing resources,

which makes them suitable for mobile devices. Machine learning is a mature area and its use for tracking is

increasing rapidly. Although, there are still several open problems in the area.

Recent improvements in communication networks enable the increasing number of works that use

distributed approaches, as shown in this study. In the future, this infrastructure will probably be more reliable

and faster (The Next Generation Mobile Networks Ltd. 2015), which creates new opportunities to perform

tracking on remote servers, using the mobile device only to capture the input information and display the output

results. Moreover, this connectivity is a basic requirement for creating sensitive environments using smart

objects. Each one of these connected sensors can be aware of its location and may be used to share this
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information with a mobile device and perform fully distributed tracking. For instance, smart objects spread over

an indoor place can be used to provide or improve the indoor localization of a person using a smartphone

connected with them.

It is also important to be aware of the improvements of the hardware capabilities that will be

available on mobile devices in near future. New tracking techniques can be proposed or existing ones

adapted taking into consideration the use of multiple cores of the device’s processor and graphics processing

unit (GPU). Beyond that, it is possible that several mobile devices will have chips dedicated exclusively

to execute embedded computer vision algorithms, such as Qualcomm’s Hexagon digital signal processor

(DSP) (Qualcomm Technologies, Inc. 2015). These dedicated chips will allow tracking to be performed faster

while consuming less energy.

A research topic that did not appear in the mapping was the inclusion of any kind of semantic in

tracking systems, even though it is an important research problem in computer vision. One reason could be that

extracting any type of knowledge from the scene demands more resources than a mobile device can handle

in a practical time at that point. However, recent tracking techniques for augmented reality, such as ARCore

and ARKit are able to identify planes to anchor the augmented content, which can be the floor, a table or a

wall. With this simple knowledge of the environment, it is possible to improve rendering, such as adding more

natural shadows.
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3
Preliminary Experiments

The systematic mapping provided valuable theoretical knowledge regarding tracking for mobile devices.

These lessons learned were used to elaborate a set of preliminary experimental scenarios aiming to obtain a

practical know-how about the specificities of developing tracking techniques for mobile devices. This chapter

describes these experiments and discusses their results and findings. The first one evaluates the Google

Tango platform to establish a reference of the state-of-the-art trackers. Additionally, another experiment tests

the use of parallelism, distributed approach and native implementation in order to find an efficient architecture

to execute computer vision algorithms on mobile devices. After that, it is shown the experiments to test different

tracking techniques that the systematic mapping indicated to be suitable for mobile devices. One is a face

tracking technique using machine learning and local binary features. The other one is a SLAM technique that

was developed in desktop and ported to a Tango tablet device.

3.1 Evaluation of Tango Platform

Tango (Google Inc. 2014) is a platform that combines computer vision techniques with state-of-the-art

sensors, allowing to perform 6DoF tracking on mobile devices. Even with the release of ARCore and ARKit,

Tango is still arguably the best tracker available for them. Mainly because it uses cameras that are not available

on most of the handheld devices, such as depth and fisheye ones. While the fisheye camera widens the field of

view, which increases the number of characteristics, the depth camera provides a good approximation of the

scene structure and scale. These additional data help achieving a more precise and stable tracking.

Therefore, it is relevant to evaluate its accuracy. As far as the author knows, so far no study evaluates

the Tango platform. This experiment is important because it provides expertise on how to assess tracking

systems and also to find scenarios and situations in which they work well and fail. This section aims to evaluate

the precision of both motion tracking and depth sensing technologies of the Tango platform. The evaluation

method proposed and the results were discussed in (Roberto et al. 2016a), and details are provided in the next

subsections.

3.1.1 Tango Platform

As mentioned, the devices that support the Tango platform have some features that provide new ways

to navigate in different environments. They use technologies such as motion tracking and depth perception. This

subsection explains how these technologies work on the Tango platform as well as describes the characteristics

of the sensors available.

Motion tracking means that a Tango device can track its own movement and orientation through 3D

space. Tango implements motion tracking using visual-inertial odometry to estimate where a device is relative

to where it started. Standard visual odometry uses camera images to determine a change in position by looking

at the relative position of different features in those images. Visual-inertial supplements visual odometry with
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inertial motion sensors capable of tracking a device’s rotation and acceleration. This allows a Tango device to

estimate both its orientation and movement within a 3D space with even greater accuracy. Unlike GPS, motion

tracking using visual-inertial odometry works indoors. In addition to the gyroscope and accelerometers, Tango

uses a wide-angle motion tracking camera to add visual information, which helps to estimate rotation and linear

acceleration more accurately. To perform motion tracking, the Tango APIs provide the position and orientation

of the user’s device in full six degrees of freedom. The data is returned with two main parts: a vector in meters

for translation and a quaternion for rotation.

Depth Perception gives an application the ability to understand the distance to objects in the real

world. Tango tablet implements depth perception with time-of-flight (ToF) technology, which requires the use of

an infrared projector and an infrared sensor. Tango tablet depth sensor is designed to work best indoors at

moderate distances (0.5 to 4 meters). This configuration gives good depth at a distance while balancing power

requirements for infrared illumination and depth processing. It may not be ideal for close-range object scanning

or gesture detection.

The Tango APIs provide a function to get depth data in the form of a point cloud. This format gives

(x,y,z) coordinates for as many points in the scene as are possible to calculate. Each dimension is a floating

point value recording the position of each point in meters in the coordinate frame of the depth-sensing camera.

3.1.2 Evaluation Methodology

Evaluating tracking systems is a challenging task (Tamura et al. 2009). Many efforts have been

made in the past years to provide metrics and standards to analyze the aspects related to this problem (Petit

et al. 2011; Roy et al. 2015; Hodaň et al. 2016). The main reason is the difficulty to find the ground truth

to compare with the obtained results. There are several benchmark datasets available aiming computer

vision tracking systems evaluation, each one having many purposes and providing several types of input

data. For instance, (Lieberknecht et al. 2009) presents an image dataset to evaluate planar model-based

techniques, (Shibata et al. 2010) describes a benchmark to measure the quality of 3D model-based algorithms

and (Sturm et al. 2012) provides RGB and depth information aiming SLAM systems. All of them also provide

the expected results, which are used to assert the precision of the algorithm. However, it is hard to use these

datasets on mobile devices. One reason is the difficulty to extract information from different sensors since

they are noisy and the precision varies among devices. Therefore, it was proposed a different methodology to

evaluate the motion tracking and depth sensing functionalities in the Tango Platform. The selected device was

the Yellowstone tablet, which provides all the Tango functionalities.

3.1.2.1 Motion Tracking

The evaluation method is based on moving the Yellowstone tablet between two known positions in the

real world. Then, comparing the distance between these positions estimated using the device with the ground

truth value. This way, it is possible to evaluate the error the system accumulates during motion tracking from a

starting point to an ending position. It was used a graph paper with the precision of one millimeter to ensure

the experiment accuracy. The paper was glued to a table so it does not move during the tests. A needle was

attached to the base of the Yellowstone tablet in order to have the exact position of the device over the paper.

Figure 3.1 shows the setup. It was designed two different experiments based on this setup, one to evaluate a

small augmented reality workspace and another one for large environments.

For the first one, the idea is to evaluate how the Yellowstone tablet works on a small workspace, which

for this study is a table with an area up to one square meter. Therefore, the device is positioned with the needle

on the origin of the graph paper and their axes are aligned. The tablet will be moved freely and placed in any
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Figure 3.1: Evaluation setup consists of a graph paper with precision of one millimeter and measuring
1.5 x 0.55 meters. Red circle highlights the needle used to get the exact position on the paper.

other position on the graph paper. The error is the difference of the Euclidean distances between the origin and

the final position computed on the Tango device and measured with the graph paper.

Regarding the large environment, the goal is to measure how the Tango device behaves when

performing motion tracking on places such as a regular office and outdoors. The office is a closed room that

has an approximate area of 50 square meters and artificial illumination. As for the outdoor experiment, it was

placed in two different courtyards measuring around 100 square meters each. It was also located in the corridor

of a building that is open to the outside. All the outdoor measurements were collected using natural illumination

during daylight.

It is not possible to have a graph paper that is large enough to cover the entire office or the courtyards.

Thus, for this experiment, the device is also positioned with the needle on the origin of the graph paper, their

axes are aligned and it is moved freely in these environments. The difference from the previous experiment

is that the tablet is returned to the same position where it started. The error is also the Euclidean distance

between the position computed on the Tango device after finishing the movement and the initial position.

3.1.2.2 Depth Sensing

Regarding the depth sensor, it was evaluated the accuracy of the 3D points positions obtained from it.

The process consists of calculating the Euclidean distance between 3D points reconstructed from the color

camera and corresponding ones from the depth camera. The Tango API provides the registration between

color and depth cameras. The intrinsic parameters used are the ones from the manufacturer calibration. The

3D points of the color camera are the inner corners of a detected chessboard pattern whose pose is estimated

using the Direct Linear Transformation (DLT) method and refined by minimization of reprojection error (Hartley

et al. 2003).

Since the depth image generated by the Tango device has a lower resolution when compared to the

color image, it has to be upsampled when obtaining the corresponding depth measure of a chessboard corner.

Both nearest-neighbor and bilateral interpolation (Tomasi et al. 1998) were evaluated for performing this task.
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3.1.3 Results

In order to evaluate the motion tracking capability of the Tango platform, it was used a sample

application available on the project GitHub1 that uses both Tango Area Learning and Motion Capture features

and is called “C++ Augmented Reality Example”. This application uses the fisheye camera and the device

gyroscope and accelerometer to compute its pose relative to its initial position.

3.1.3.1 Motion Tracking

For the experiment on the small workspace, the Yellowstone tablet was moved freely to any other

position over the graph paper. To have statistical power, the sample size for this experiment was calculated

aiming 95% confidence within 1 centimeter precision (Jain 1991). Therefore, these measurements were

repeated 67 times to ensure that.

Figure 3.2 shows the error dispersion, in which the smallest was 0.009 meters and the largest was

0.181 meters. On average, the error was 0.067 ± 0.040 meters.

Figure 3.2: Error dispersion for the small workspace experiment.

Figure 3.3 shows the device’s position distribution over the graph paper during the experiment.

Figure 3.3: Distribution of the device positions on the graph paper (green) and their correspondent
positions calculated by the Yellowstone tablet (red).

Regarding the evaluation of the motion tracking on large environments, the error is the Euclidean

distance between the initial and the final position calculated by the device after moving it freely in this

environment and returning to the same location. After a few measurements, it was noted a large difference

1https://github.com/googlesamples/tango-examples-c

https://github.com/googlesamples/tango-examples-c
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among the errors from the indoor and outdoor environments. Therefore, it was decided to perform two different

evaluations, one for each situation. The number of samples to ensure statistical power emphasize this decision.

For the indoor experiments, it was necessary to have 31 samples to have 95% confidence within 2 centimeters

precision, which is the double of the small workspace because the covered area was much larger. On the

other hand, it was not possible to have such confidence in the outdoor experience. The reason is that the error

variation is so high that it would be necessary to have more than 5000 samples to have 95% of confidence

within 2 centimeters precision.

Figure 3.4 shows the error dispersion in the large indoor scenario. The smallest one was 0.049 meters

while the largest was 0.261 meters. On average, the error of the 45 samples measured was 0.142 ± 0.057

meters. Also, the average distance walked with the Yellowstone tablet was 23.608 ± 7.892 meters.

Figure 3.4: Error dispersion for the large indoor environment experiment.

Figure 3.5 illustrates one of the paths walked with the Yellowstone tablet and the difference between

the initial and final positions.

Figure 3.5: Screenshot of one of the paths computed using the Yellowstone tablet. The green arrow
points to the initial place and the red one to the final position calculated after a free walk. The error is

the average Euclidean distance between them.

Regarding large outdoor environments, it was performed 21 repetitions. However, this amount was not

enough to have statistical power. Although, the average error of 0.905 ± 0.753 meters indicates that precision

of the Yellowstone tablet is much smaller when it is dealing with natural illumination and wide spaces.
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3.1.3.2 Depth Sensing

In the first experiments, the chessboard pattern was printed on a paper using black ink. However,

the dark squares did not reflect infrared light in a way that would allow robustly estimating the depth of the

chessboard corners. Due to this, it was used a mix of cyan, magenta and yellow ink in order to have dark

squares that are correctly scanned by the depth camera. This aspect is illustrated in Figure 3.6. The chessboard

was printed on A4 paper with a square side of 28 millimeters.

Figure 3.6: Screenshot of the depth estimation of two chessboards printed on a paper. On the right,
the one printed with a mix of cyan, magenta and yellow inks. On the left, the same pattern printed with
a black ink. Note that the sensor is not able to estimate depth on the black squares of the left paper.

Figure 3.7 shows the mean depth estimation error considering different distances between the device

and the chessboard pattern and different depth interpolation strategies. In order to obtain error values accurate

within 0.1 millimeters at 95% confidence, 150 samples were collected for each configuration. The average

execution times of the nearest-neighbor and bilateral depth interpolation procedures for each point were 0.696

± 0.127 and 1.881 ± 0.312 milliseconds, respectively.

Figure 3.7: Mean depth estimation error with respect to distance between Tango device and
chessboard pattern using different depth interpolation methods.
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3.1.4 Discussion

The results showed that the motion tracking of the Yellowstone tablet is 2.3 times more precise on a

small workspace than on large indoor environments. However, the presented errors can have an impact on the

user experience. An average error of 6 centimeters is often noticed in a small workspace.

On the other hand, even having a bigger error when dealing with large environments, the precision

of the motion tracking on indoor spaces is suitable to provide a good user experience for several kinds of

augmented reality applications. However, for scenarios in which it is necessary to have accuracy, this error

can harm the user experience. Figure 3.8 (left) shows an example where Yellowstone tablet measure tool is

calculating the width of a 0.7 meter door. After moving the device for a few steps away from the door and back,

the ruler is placed in a different position, as seen on the right side.

Figure 3.8: Door width estimation using the Yellowstone tablet. Left side shows the initial measurement
and the right side shows the ruler position after moving the device. Door actual width is 0.7 meters.

During the experiment, it was noticed that the algorithm that Tango uses for motion tracking seems

to mistrust the sensors it uses regarding their precision. There is an indication that it has a much stronger

confidence in the information provided by the fisheye camera. For instance, sometimes the device was left

standing still over the table and when some object moves in front of the camera, the motion tracking algorithm

calculates that the tablet was moving in the opposite direction.

The tests on large outdoor environments could not provide results with statistical power because there

was a significant variation on the error measured on every sample. However, this disparity suggests that the

Yellowstone tablet has some issues to deal with outdoor illumination and wide spaces. It is emphasized by the

fact that no result of the outdoor measurements presented a smaller error than any indoor sample. Moreover,

in some cases, the error was greater than 1.0 meter and in the worst case it reached more than 3.0 meters.

Regarding depth sensing, the mean errors presented by Yellowstone tablet were similar to the ones

obtained with a desktop depth sensor. The results also suggest that the depth estimation error increases

linearly with respect to the distance between the device and the object. Bilateral depth interpolation provided

an average precision improvement of 1.82% (1.08 millimeters) with respect to the nearest-neighbor approach.

However, it was more than 2.5 times (1.18 milliseconds) slower on average for each point.

3.2 Efficient Tracking on Mobile Devices

Computer vision tracking is a task that demands many computational resources. It may be necessary

a lot of processing and memory to extract and describe natural characteristics from a scene or to correctly

match them with the features from a model. As the tracking system runs for an extended period of time, the
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number of features may grow, requiring more memory space, both ROM and RAM.

Since mobile devices have limited resources, it is necessary to investigate the best approach to

minimize these constraints. This section aims to explore different ways to implement a computer vision tracking

system in order to find the best trade-off between processing and memory. The results found in this experiment

were published in (Lima et al. 2015), and details are given in the next subsection.

3.2.1 Android Architectures for Computer Vision Tracking

After analyzing some possibilities to implement an Android system to perform computer vision tracking,

two of them appeared to have the potential to combine high performance with low memory consumption. The

first one is a Multi-Thread Partial Native implementation, which benefits from using the different cores of the

device processor as well as the performance gain of having native code for some tasks, which is known to be

faster than Java implementations. The second one is a Client/Server approach that uses the processing power

of a remote server to perform the most demanding processing tasks. During their development, another method

aroused, which leaves only the necessary functions on the Java side while transfer most of the computation to

the native part of the code and is called Full Native implementation.

A simple static model tracking technique was designed in order to provide a quick prototype of these

approaches. The first step is to build the model. In order to do so, ORB features (Rublee et al. 2011) are

extracted from a loaded image that will work as a planar template. After that, a z-coordinate is given to the

features, so each one now has a corresponding 3D point. Then, it is computed their ORB descriptors. The

planar static model that will be tracked is represented by the data structure that stores the descriptors and the

3D points of the features extracted from the image.

After creating the static model, it is possible to start tracking this template. First, ORB features are

extracted from the frame captured by the device’s camera and their descriptors are computed. Then, they

are matched with the model’s descriptors using a nearest neighbor search approach that finds the Hamming

distance between descriptors to determine the best correspondence candidates between these groups of

features. However, it is common to have several wrong matches and it is necessary to filter them to improve

accuracy. One effective way to do that is by comparing the distance between the closest and the second

closest neighbors. This strategy works because correct matches have the nearest neighbor much closer than

the second closest one, which is incorrect (Lowe 2004). After filtering the good matches, the camera rotation

and translation are estimated using EPnP (Lepetit et al. 2009). RANSAC (Fischler et al. 1981) is also used to

reduce the influence of outliers, which are spurious matches that could also remain after the filtering process.

This process is repeated until the application finishes.

3.2.1.1 Multi-Thread Partial Native Implementation

This implementation parallelizes part of the tracking steps described above, which are: feature

extraction and description, matching with model keypoints, and filtering for good matches.

After building the static model, the tracker enters the main loop. This implementation uses a port

of OpenCV (Bradski 2000) to this mobile platform named OpenCV4Android. The library provides the data

structures and computer vision functions to perform the tracking task. OpenCV4Android is an interface that

provides access to almost every OpenCV function in Java. Additionally, the original C++ version is also available

to be used on native developments.

This implementation uses both versions. First, the current frame is captured using a camera interface

provided by OpenCV and a Mat structure stores it. The Native part of the system receives this image, which

is divided into equal parts according to the number of cores available in the device. Each core will process
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one part of the frame in parallel. Intel TBB library (Intel Corporation 2016) has a version that is compatible

with Android and was used on this version of the tracker. Then, in parallel, each core extracts features from

one part of the image, matches them with the model’s keypoints and filters to select the good matches. After

every core finishes their tasks, the good matches are combined in only one structure and it is used to compute

the device rotation and translation. The augmented reality content is drawn over the original image, which is

returned to the Java part of the code so the rendering structure provided by OpenCV can display the modified

frame on the screen. Figure 3.9 illustrates this implementation.

Figure 3.9: Multi-Thread Partial Native flow diagram.

3.2.1.2 Client/Server Implementation

This architecture aims to transfer part of the tracking processing to a remote server, which has more

computational power to perform this task quicker than on the mobile device. Several tasks can be assigned to

be executed at the server. On one hand, it is possible to implement all the tracking pipeline remotely, but it will

demand an excellent network infrastructure to transfer the frames in real-time on both directions. On the other

hand, the server can execute only selected tasks, which will decrease the network requirements. However, the

server processing and memory resources will not be fully exploited.

For this implementation, every tracking step that depends on the image will be processed on the device

in order to decrease the dependency of a good network infrastructure. Therefore, as seen in Figure 3.10, the

current frame is captured using a camera interface provided by OpenCV and ORB is used to extract features

and compute their descriptors. These information are encapsulated and sent to the server through a wireless

local network of 54 Mbps, which is 35% faster than the fastest 4G network available (OpenSignal, Inc 2016).

The server receives this data, which is hundreds of time smaller than the full image, and matches it with the

model sent to the server during the initialization. Then, it filters these matches to select the good ones and

computes the object rotation and translation. These two vectors are sent back to the device that draws the

augmented content over the captured frame and renders it on the screen.

3.2.1.3 Full Native Implementation

It has become clear during the development of these approaches that capturing and rendering a frame

using OpenCV functions is not efficient. The alternative found was to use camera structures from Android to

capture a frame buffer and render it with OpenGL (Khronos Group 1997).
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Figure 3.10: Client/Server flow diagram.

The problem with this approach is that Android camera and rendering structures work only with YUV

color space while the OpenCV library uses the RGB color space (Kuehni 2003). In other words, each frame

buffer received from the Android camera preview is in the NV21 format, which is the standard picture format on

Android camera preview. This way, it was necessary to convert the color space of the image buffer on each

frame, and a better approach to do so was to implement a parallel loop rather than using a sequential one.

Additionally, it was necessary to implement methods that use OpenCV functions to render on YUV images like

it was an RGB frame.

This way, every part of the tracker that uses OpenCV is implemented with native code. Therefore, the

frame is captured, stored in a byte array and then sent using Java Native Interface (JNI). The YUV frame buffer

is converted to RGB to be tracked sequentially. The augmented content is drawn and the image is converted to

a byte array so it could be sent to the Java layer in order to be rendered, as shown in Figure 3.11.

Figure 3.11: Full Native flow diagram.

Another benefit of this architecture is that it eliminates the necessity of having OpenCV Manager. This

software has to be downloaded from Google Play Store and it provides all the dependencies necessary to

execute applications that use the Java version of OpenCV4Android. When programming only with the C++

part, Android compiles all the dependencies and embeds them in the final application package.
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3.2.2 Architectures Evaluation

The solutions were compared regarding performance and memory used, both RAM and ROM.

Additionally, it was also developed a solution in which all the tracking is performed in Java. This solution was set

as a base for comparison with the other implementations. For all of them, the evaluation method consisted in

tracking the static model in the real world to project virtual lines over the template board, as seen in Figure 3.12.

Figure 3.12: Screen capture of the system tracking the template. The blue square is the virtual content
that is placed on top of the model.

The device used for evaluation was a Samsung Galaxy Note 10.1, which has a 2.3GHz quad-core

processor, 3GB and 32GB of RAM and ROM memory, respectively. Figure 3.13 shows the results of running

the tracker with each implementation.

Figure 3.13: Execution time in milliseconds on every tracking stage for each implemented architecture.
For Client/Server approach, feature matching, matching filtering and pose calculation also includes the

time to transfer the data to the server and back to the device.

On average, Java implementation presented the worst results, being more than two times slower than

the Multi-Thread version. It is clear that the bottleneck for every implementation is the feature extraction step.

In the Full Native version, this stage consumes 83.3% of the total processing time. As expected, parallelizing

this task provides a good speedup, more than three times when compared to a Java implementation.

In the other tracking phases, there is a significant speedup on using native code when compared with

Java. However, parallelizing these tasks decreases their performance when comparing to sequential native

implementation. The reason is that there is an overhead to divide and manage the threads. On the server,

these tasks combined are executed in almost 2 milliseconds, but the time required to transfer the data to the

server and back to the device eliminated all this gain. It is important to mention that the latency of local networks
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is usually around ten milliseconds, which has a significant impact when dealing with real-time systems.

As expected, the Full Native implementation is able to capture and render the frame using Android

functions much faster than the other approaches, which use OpenCV functions to do the same task.

Regarding memory consumption, it is possible to see on Figure 3.14 that the Client/Server implementation

is the most efficient. On the other hand, Multi-Thread Partial Native is the one that requires more RAM to

execute. The reason is that the first one deals with less information because part of the steps is processed on

the server. However, the second one manipulates all the data on the device and it is also necessary to create

new structures to manage the different threads, which impacts on memory consumption.

Figure 3.14: RAM memory consumption in MB during the execution of each architecture
implementation.

The Full Native implementation also has massive memory consumption when compared with the

Client/Server approach. It is due the fact that this version includes all the OpenCV dependencies because it is

fully implemented using native code. On the other hand, the Client/Server version requires OpenCV Manager,

which consumes twice more memory than the application itself.

As for the space required to store each application, both Client/Server and Multi-Thread Partial Native

versions are much smaller than the Full Native implementation. One more time, the reason for that is that they

do not embed the OpenCV dependencies because they access them from OpenCV Manager. Figure 3.15

shows that Full Native application is 7.55 times larger than Client/Server, but has less than half of its total size

when OpenCV Manager is also taken into account.

Figure 3.15: ROM memory in MB required to storage each architecture implementation.



3.3. MACHINE LEARNING TRACKING ON MOBILE DEVICES 51

3.2.3 Discussion

The tests showed that the selection of the best architecture depends on different factors. For instance,

when using a mobile device that has a lot of memory and multiple cores, the best approach would be the

Multi-Thread Partial Native. However, in case a good network infrastructure is available for a device with few

resources, the Client/Server implementation would be a good choice.

It is safe to say that, on average, the Full Native architecture is the most efficient between the evaluated

alternatives. It is approximately 23% slower than Multi-Thread Partial Native, but uses about half of the memory.

On the other hand, requires around 39% more RAM than Client/Server running more than 45% faster. Other

advantage is that it does not require the installation of any additional application. Additionally, depending on

the algorithm that will be developed, it is possible to identify parts that could be paralleled to make the system

faster.

Perhaps the ideal architecture would be the mixing of all of them. A Full Native approach that supports

multi-thread and is able to transfer tasks to a remote server whenever this alternative is suitable. Therefore,

the system would constantly and automatically evaluate the resources available on the device as well as the

quality of the network to decide which one has the best trade-off for a certain task. There are works that use

this principle to select the fastest tracking technique according to the available resources that will achieve the

required level of accuracy (Wagner et al. 2009; Teixeira 2013). Nevertheless, no works were found that evaluate

the resources of a mobile device.

3.3 Machine Learning Tracking on Mobile Devices

Because of the characteristics of machine learning approaches, which concentrate most of the

computational effort in the offline training phase while the online tracker demands fewer resources, this type of

technique can be very useful for tracking. For instance, it is possible to update the camera pose using a very

small amount of information, but highly discriminative, which was inferred previously (Jurie et al. 2002).

One application in which machine learning is making an impact is to track a body or its parts, such as

face and hand. Face tracking, in particular, has several purposes on mobile devices. For example, it can be

used to identify the face of the owner of the phone using the frontal camera to unlock the device or not (Hadid

et al. 2007). Another example is to provide a makeup tutorial using augmented reality (Almeida et al. 2015).

In this sense, it is important to identify not only the position of the face on the screen but also the location of

relevant points in the eyes, nose, mouth and chin, called landmarks.

This section describes the research process to develop a real-time face tracking technique for mobile

devices that, given an input image, is capable of identifying face landmarks.

3.3.1 Research Methodology

There are several face tracking techniques. Among them is the Constrained Local Model (CLM) (Morency

2012) that performs a local search to find the position of the landmarks. Another one is the work described

in (Ramanan 2012), which presents an idea similar to the CLM technique, but has better results. Although

these techniques provide good precision, they are not optimized for mobile devices. Therefore, it was necessary

to perform a literature review in order to determine if there was a more suitable approach.

The snowball sampling method was chosen (Given 2008), in which a good reference study is used as

a seed to find other relevant works. In this sense, both the papers that are referred in the base study and the

ones that cite them are gathered for further evaluation. For this study, the reference paper used was (Ramanan
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2012).

The interest was in finding newer studies that improve the base technique. Therefore, the snowball

sampling was applied in only one direction: collecting papers that cite the base approach. In April 2015, a

total of 253 studies were selected. Because several papers were about either applications that used face

detection algorithms or body tracking, only 22 works about full face tracking techniques remained. Next, those

filtered papers were evaluated according to different metrics regarding aspects that would have influence on

the performance and precision, as listed below:

� Performance aspects:

� FPS;

� RAM memory;

� ROM memory;

� Energy consumption.

� Precision aspects:

� Datasets used;

� Tracking precision;

� Number of landmarks;

� Faces in complex environments (In-the-wild).

Table 3.1 summarizes main aspects extracted from the most relevant papers evaluated. Finally, these

features were analyzed and the Local Binary Features (LBF) method described in (Ren et al. 2014) was

selected. It was the only study that presented an approach that also has a mobile device implementation with

real-time results.

Table 3.1: Evaluation of main aspects of the most promising works. Cells with asterisk mean that there
is not a clear value for the feature.

Study FPS Precision
Number of
Landmarks

In-the-wild

Base Work (Ramanan 2012) 25 (desktop) 90% 68 Yes

LBF (Ren et al. 2014)
300 (mobile)
3000 (desktop)

* 29 - 164 Yes

Real-Time Face Detection
in CUDA (Cheng et al. 2014)

45 (desktop) * 68 Yes

One ms Face Alignment (Kazemi et al. 2014) * 0.04 px 194 Yes
Face Estimation Under
Occlusion (Burgos-Artizzu et al. 2013)

12 (desktop) n/a * Yes

3.3.2 Local Binary Features Technique

The selected work presents a regression approach for face alignment that uses a locality principle to

independently learn a set of highly discriminative local binary features for each facial landmark. The obtained

local binary features are used to jointly learn a linear regression for the final output.

The selected approach predicts facial shape S in a cascaded manner. Beginning with an initial shape

S0, S is progressively refined by estimating a shape increment ∆S stage-by-stage:
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St = St-1 +∆St.
�� ��3.1

In a generic form, a shape increment ∆St at stage t is regressed as

∆St =W tφ t(I,St-1)
�� ��3.2

where I is the input image, St-1 is the shape from the previous stage, φ t is a feature mapping function, and W t

is a linear regression matrix.

3.3.2.1 Learning The Feature Mapping Function φ t

The feature mapping function is composed of a set of local feature mapping functions that are learned

individually and then combined to compose φ t = [φt1 , φt2 ,. . . , φtL ]. A standard regression random forest is

used to learn each local mapping function for each φt1 . The split nodes in the trees are trained using the

pixel-difference feature and the one that gives rise to maximum variance reduction is selected, as shown in

Figure 3.16.

Figure 3.16: For every image on the training dataset, each local feature is learned individually from the
landmarks (white circles). The intensity difference between two random pixels (white crosses) is used

as decision function to split the training images. Each node has a distinct pair of features.

Only pixel features in a local region around the landmark are sampled. In the training phase, the

optimal region size is estimated in each stage. The optimal radius region should depend on the distribution of

the ground truth landmark of each training image around the respective landmark of the initial shape. Therefore,

it decreases as the landmarks converge to the ground truth, as seen in Figure 3.17. As a consequence, it is

necessary to extract fewer features on later stages than on earlier ones for maintaining the ideal distribution.

After creating the random forest, all training images traverse the trees until they reach one leaf node

for each tree. The output of the random forest is the combination of the outputs stored in these leaf nodes.

Supposing the total number of leaf nodes is D, the φ t will be a DxL matrix in which a 1 value means the image

reaches the corresponding leaf node and 0 otherwise, as illustrated in Figure 3.18. Therefore, φ t is a highly

sparse matrix called global feature mapping function and all φtL are the local binary features.

3.3.2.2 Learning The Global Linear Regression Matrix Wt

After learning the global feature mapping function, the global linear projection Wt is learned by

minimizing the distance of every landmark on the initial shape to the correspondent landmark on the ground
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Figure 3.17: Local region around the landmark on every stage.

Figure 3.18: Traverse of three different landmarks of one of the training images on the generated
forest. The sequence of zeros and ones of every landmark is the local binary feature.

truth.

This technique that uses a combination of local learners to discover global functions is called “transfer

learning”, which the authors claim that significantly improves performance for two reasons: the locally learned

output by random forest is noisy because the number of training samples in a leaf node may be insufficient

and the global regression can effectively enforce a global shape constraint and reduce local errors caused by

occlusion and ambiguous local appearance.

3.3.2.3 Tracking a New Face

The training phase provides the global feature mapping function and the global linear projection, which

are loaded by the tracker. First, a regular face detector is used to determine the position of the face in the

image. This position is used to choose a location to S0 that is at least near the correct position of S. After that,

the image traverses the trees until it reaches one leaf node for each tree, which will have 1 while all other leaf

nodes will be 0. The global linear regressor is applied to the image’s local binary feature to determine the ∆S0

increment and compute S1, which is used as input to repeat the process until S is found. Figure 3.19 illustrates

this process.
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Figure 3.19: Cascade shape regressor, in which the landmark position is incremented every stage.

3.3.3 Implementation on Android

There is an open source C++ implementation of the technique available, which was not developed by

the original paper’s authors2. Figure 3.20 shows the results of this implementation.

Figure 3.20: Result from C++ implementation of the LBF technique.

One advantage of having a C++ implementation is that it is easier to port to the efficient Android

architecture described in the last section than other programming languages since it is not necessary to rewrite

all the code. Additionally, OpenCV library is the only dependence of this implementation. Another benefit is the

fact that it is possible to port only the tracking part of the system to Android and maintain the training phase in

desktop without having incompatibilities regarding the training file.

This desktop platform implementation of LBF has some parts that do not compile or execute on the

Android platform, such as the OpenCV functions for rendering images on a window. Because of that, it was

created identifiers for both platforms, Windows and Android, in order to make the same code of the LBF system

2https://github.com/yulequan/face-alignment-in-3000fps

https://github.com/yulequan/face-alignment-in-3000fps
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work properly on each of them. Hence, a Visual Studio project was created inside the JNI folder, in order to

have an application for desktop environment that runs the same code of the Android environment. As a benefit,

it is possible to execute, test and debug the C++ code using the Visual Studio IDE, once the Android developer

environment does not provide tools for debugging the C++ code at this moment.

Additionally, it was necessary to compile some of the libraries used in the project itself. For example, in

the case of the OpenCV library, only the modules utilized by the application were compiled, discarding unused

modules, and this brought gains in the size of the system.

It was possible to test several parameters in desktop to determine which ones were the most suitable

for Android. Four parameters were modified:

� Number of landmarks: L = 31 or L = 68;

� Number of trees per landmarks: N ∈ Z | 4 ≤ N ≤ 10;

� Depth of each tree: D ∈ Z | 4 ≤ D ≤ 7;

� Number of stages: T ∈ Z | 4 ≤ T ≤ 7;

� Features per stage: (F1, FT) ∈ {(80, 200), (160, 400), (240, 600), (320, 800), (400, 1000)}.

The number of features on intermediate stages varies evenly from the minimal value to the maximum

depending on the number of stages. Regarding the number of landmarks, 68 is the most common configuration

used by most face tracking datasets. This is the only parameter that has influence in both training file size and

execution time. Therefore, it was selected the smallest subset of landmarks that is necessary to identify the

parts of a face. Figure 3.21 shows the standard landmark configuration with 68 points and the 31 landmarks

selected. The number of stages, trees and their depth impact only the size of the training file, which grows as

these parameters increase. Therefore, the code was modified to train and test the 1,120 combinations of these

parameters automatically and evaluate them according to the average error of the estimated position of every

landmark with respect to the ground truth, the size of the training file and execution time.

Figure 3.21: Standard landmark configuration with 68 points (left) and the 31 landmarks selected
(right).

The set of parameters with the best trade-off between precision, execution time and training file size

was P = {L = 31, N = 5, D = 4, D = 4 and F = (400, 1000)}. On desktop, this set of parameters presented a

precision of 7.095 pixels, a training file of 1.60 MB and a mean execution time of 2.16 ms (462.96 FPS).

The training file generated with this set of parameters was used as input for the Android version of the

LBF tracker. The evaluation was performed using an LG G3 device. The face was tracked using the frontal

camera with 1920x1080 resolution. The binary application package file generated had 9.86 MB and used 45.4
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MB of the RAM memory while executing. The execution time was 8.06 ± 3.57 ms (124.07 FPS). Regarding

precision, since the Android version uses the same code as the desktop version, it is natural to say that they

share the same error. Indeed, visually both implementations present similar results.

3.3.3.1 Improvements

The port of LBF to the Android platform brought some challenges regarding efficient implementation

on mobile devices. One example is the data structure that should be used. The desktop implementation used

double precision for floating point numbers. It has an impact on training file size. Changing these numbers from

double to float decreased the size of the training file and did not have any implications in the tracking precision.

Another challenge is to know the resources provided by the Android platform and the libraries used.

For instance, the first Android version was taking about 125 ms on average to track a single frame (8 FPS).

The bottleneck was the OpenCV face detector, which takes more than 100 milliseconds to find the face position

on each frame. The alternative was to use the Android native face detector, which provides the list of every

face in a frame by the time it is available. This feature is accelerated in hardware and has no impact on the

frame capture rate, which remains at 30 FPS with or without the face detector.

These are examples of situations and problems that can occur as the tracking system becomes more

complex. The solution remains as lessons learned for future implementations.

Regarding improvements on the LBF itself, the original technique was designed for desktop and

supports only images in which the face is upright. On the other hand, a mobile device can be held in any

orientation while tracking the users’ face. Thus, the first mobile version fails to track faces if the device is rotated.

In order to solve this limitation, the first approach was to use the devices’ sensor for obtaining its orientation.

Then, the image is rotated to make the face upright. Finally, tracking is performed using the corrected image.

However, the rotation of a full HD image is very slow. Rather than rotating the entire image, a more efficient

approach is to rotate only the 31 landmarks of the initial guess and put them in the same orientation of the

device, as shown in Figure 3.22.

Figure 3.22: Initial guess chosen as if the image is in the upright position (a). If it is used on the
rotated image, it will lead to an incorrect result (b). Therefore, if the initial guess is rotated using the

device’s orientation, it will be on the correct position (c).

However, the patch around each landmark that is used to transverse the tree is also rotated. Thus, the

two pixels used in the decision node are also rotated in order to access the correct position in the image. This

modification allows LBF to track in every orientation of the device and achieve the same result as in the upright

position, as can be seen in Figure 3.23.
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Figure 3.23: Tracking results with different device orientations3.

3.3.4 Discussion

The use of machine learning to perform tracking seems to be very promising. The main concern is

regarding the space necessary to store the training file because it can grow as the objects or scene to be

tracked get more complex. For instance, in order to track only 31 landmarks in a face, LBF needs to load a 1.60

MB training file and to track a planar static model similar to the one used on the last experiment, the training file

would have more than 25 MB (Simões 2016). This size will be even bigger when dealing with more complex

environments, such as a small table with 3D objects and this is critical on mobile devices.

This fact is reflected on the systematic mapping presented in the previous chapter in which the machine

learning approaches are used to track only parts of the body, such as face and hands. However, it is possible to

make traditional methods more robust when combining them with learning techniques. One example is (Vineet

et al. 2015), which uses a random forest classifier in order to evaluate the features extracted from an image to

perform a semantic evaluation.

3.4 Simple SLAM System on Mobile Devices

Simultaneous Localization And Mapping, popular known as SLAM, is often related as an algorithm, but

in fact it is the problem of building a map while localizing the device within that map at the same time (Leonard

et al. 1991). It is often referred as a chicken and egg problem because a good map is required to localize the

device while a precise location is needed to build the map. Moreover, these two problems cannot be solved

independently of each other and consume a lot of computational resources.

However, SLAM algorithms have been recently deployed on mobile devices since they are continuously

improving regarding processing power and memory. This fact makes them powerful enough to perform such

complex tasks. This scenario favors the creation of numerous types of applications since these kind of devices

create several opportunities that are only possible when the user can be mobile.

This section describes the initial stages regarding the port of an initial SLAM technique to a mobile

device platform using Google’s Project Tango tablet (Google Inc. 2014). The main motivation to use this

device is to benefit from the technology embedded on it, especially the depth sensor. The results found on this

implementation were also published in (Araujo et al. 2016).

3.4.1 SLAM Systems Works on Mobile Devices

SLAM systems are traditionally used for robot navigation (Sim et al. 2005). Recently, their use has

become more and more popular in augmented reality applications (Klein et al. 2007). Since then, several

3A video with this result is also available at https://goo.gl/kGRj4K

https://goo.gl/kGRj4K
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works were developed using mobile devices so they can benefit from the mobility provided by such tools. One

example is (Klein et al. 2009), which describes an initial prototype of a keyframe-based SLAM system running

on an iPhone 3G. They have adapted PTAM (Klein et al. 2007) to generate small maps in order to mitigate the

impact of the device’s limitations regarding processing power, memory and storage capabilities.

Recent studies have proposed different types of solutions to overcome those limitations. For instance,

(Pirchheim et al. 2011) uses the plane-induced homography between keyframes to implement an efficient

mapping algorithm that decreases processing time. Li and Mourikis (Li et al. 2012) focus on visual-inertial

odometry to create a real-time navigation system. Martin et al. (Martin et al. 2014) optimize SLAM on a mobile

device by decoupling localization and mapping steps. Each one runs in a different thread and their results are

combined at the end of the process.

On the other hand, mobile devices have some features that can help SLAM systems and are not

available on a desktop platform, such as the device’s sensors. Usually, they combine data measured by sensors

with information extracted from the camera (Kao et al. 2013; Schöps et al. 2017). There are also works that

use geolocation from the GPS combined with a remote server to reduce the amount of data processed on the

device (Ventura et al. 2014). They create a 6DoF map locally on the mobile device. The global localization

method, which runs on a server, processes the globally-registered map and returns a refined global registration

correction to the mobile client.

Another way to efficiently run SLAM systems on mobile devices is using a panorama map (Pirchheim

et al. 2013). They are registered on a 3D map in order to be able to maintain tracking during rotational camera

motions, which is also a limitation for SLAM systems in general. Therefore, they can handle cameras with

pure rotational motion while creating larger and denser maps. There are also works that integrate camera

information with device’s sensors to create the panorama map and continuously update it (Ventura et al. 2012).

Because of that, the system can be used in large outdoor spaces.

3.4.2 Simple Tracking and Mapping

The proposed algorithm, called Simple Tracking and Mapping (STAM), is a monocular SLAM technique.

In general, such kind of SLAM uses a standard camera that does not provide odometry, which gives the device

position. Thus, it has to be performed visually. For STAM, visual odometry is done by tracking features using

optical flow and feature descriptors. This information is used to triangulate new points and increment the map.

In the initialization phase, it is extracted the 2D coordinates of the corners of a chessboard pattern,

and they are associated with their corresponding 3D points, which are known based on the size of each

square on the pattern. Such keypoints are named square features. Additionally, it is extracted SURF (Bay

et al. 2006) features from the entire initial frame, except the area inside the chessboard. Since this pattern is

repetitive, this action minimizes the extraction of non-discriminative keypoints. These extracted features have

no corresponding 3D points and are named triangle features. Then, it is computed the SURF descriptors for

both square and triangle keypoints in the first frame. After that, the projection matrix of the first camera is

calculated using only the square points since they are the most reliable points available. Finally, the first frame

is stored as a keyframe and the square features utilized for the pose computation are kept in a track set, which

consists of the collection of features in the map currently being used for tracking.

In the tracking phase, the points in the track set are tracked in the current frame using Kanade-Lucas

optical flow (Lucas et al. 1981). Successfully tracked square features from the track set are then used to

compute the projection matrix for the current frame based on the obtained 2D-3D correspondences. The track

set is updated leaving in this set only the features successfully tracked so far. Then, it is performed a baseline

check between the current frame and the last keyframe by verifying if the distance between camera optical
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centers is higher than a threshold.

Whenever there is enough baseline, the mapping procedure is executed, in which SURF descriptors

from keypoints extracted in the current frame are matched against the triangle features of the previous keyframe.

The matching features are then triangulated, which means they now have a 3D point associated with them and

are labeled as square features. They are also added to the map and the current track set. A feature matching

between a square feature and a feature in the current frame is considered a re-detection. Square features that

are re-detected are also added to the track set.

This process, illustrated in Figure 3.24, is repeated while there are new frames to be processed.

A sparse bundle adjustment procedure that optimizes the camera trajectory is also performed after a

pre-established number of new keyframes are added to the keyframe list.

Figure 3.24: STAM flow diagram.

3.4.3 STAM Evaluation

As mentioned before, evaluating tracking techniques is a challenging task and many efforts have

been made to provide metrics to analyze such systems. Since 2008, the International Symposium on Mixed

and Augmented Reality (ISMAR) promotes the ISMAR Tracking Competition, a contest aiming to challenge

state-of-the-art trackers through real-world problems. All the scenarios prepared for the competition try to

replicate real problems for tracking systems, such as lighting conditions, task specificities, user constraints,

levels of texture information available, objects relative size, camera resolution and others.

In 2015, ISMAR introduced a different competition style in which a SLAM system should be incrementally

built in order to be able to compete on different levels. There were two categories: off-site and on-site

competition (International Symposium on Mixed and Augmented Reality 2015). The former evaluates the

system using images and participants would submit their results online. In the later, the system should be

utilized in a real scenario that simulates a small office and participants should identify certain elements based

on given 3D coordinates in an unknown area.

3.4.3.1 Off-Site Competition

This category was divided into three levels, which evaluated the processes of camera pose tracking

step by step:
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� Level 1 - Point Matching: finding the locations of known feature points in an image;

� Level 2 - Point Tracking: tracking known feature points in successive frames;

� Level 3 - Mapping: tracking and mapping new feature points in successive frames.

The first goal of Level 1 was to find the 2D positions of the reference points, which were given by

2D image patches extracted from the same image it was used to find the 2D point, as seen in Figure 3.25.

Every patch had a 3D point associated with it. Thus, the second objective was to calculate the projective

transformation matrix from the correspondences between the 2D positions of the reference points in the image

and their 3D coordinates.

Figure 3.25: Frame from which the patches were extracted. Six samples of these patches are on the
right. The 2D position of each patch should be found in the same image.

On Level 2, the goal was to find the 2D positions of the reference points that were also given by image

patches in the initial image, then track them through the sequence of frames. Finally, calculate the projective

transformation matrix from correspondences between the 2D positions of the reference points in the image

sequence and their 3D coordinates. As seen in Figure 3.26, all the images of the sequence contain the same

scene part that can be found in the initial frame.

Figure 3.26: Six samples of patches (top right) were extracted from the first frame (top left). These
patches should be tracked along the image sequence (bottom row).
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The goal on Level 3 was to find the projective transformation matrix from the correspondences between

the 2D positions only in the last image of the sequence and their 3D coordinates. This task was similar to the

previous level, except that none of the patches found in the first frame appear in the last image, as shown in

Figure 3.27. Therefore, for this level, only tracking the given points was not enough and it was necessary to

map new features.

Figure 3.27: Six samples of patches (top row) were extracted from the first frame and nine sample
images from the sequence to be tracked. Note that the patches are disappearing along the image

sequence.

3.4.3.2 On-Site Competition

In this category, the contestant should use the system to guide him in an environment that simulates a

regular office in order to mark the contest points in one of the posters on the walls. The task is similar to Level 3

of off-site category, and it was performed in two sessions in which the contest points changed between them.

The difference is that no initial points were given and the tracking area was much larger, an 8 by 8 meters room,

as seen in Figure 3.28.

There was a chessboard marker printed on A0 paper on the starting area in which the size of each

square was 10 cm, as shown in Figure 3.29. It was used to calibrate the coordinate system. Each rectangle on

Figure 3.28 represents a table that had different types of objects that should be used by the tracking system.

Each table had objects that presented different challenges for tracking systems, such as small and reflective

objects or notebooks showing a video.

As noted in Figure 3.29, there were some posters with black and white squares on the wall where

the contest points were located. Therefore, the system should display the virtual point correct position so the

contestant could mark it using a pen. Additionally, the user should perform a specific path. From the start area,

the contestant should enter the first hallway, assign the first and second points in session one and the first

one on session two. Then, the contestant should enter the second hallway to mark the third or second point

depending if it was the first or the second session. Later, the contestant should go back to the first hallway

to collect the third point for session 2. Finally, the contestant should enter the ending area to assign the final

points.
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Figure 3.28: Schematic of the on-site tracking area. Each rectangle represents a table with different
objects. The numbers X/Y indicate the poster used to assign the four competition points in which X

represents the point order and Y the competition session.

3.4.3.3 Results

The first version of STAM was developed in C++ using data structures and basic functions from the

OpenCV library. The competition rules stated that the tracker system must run using any device that only one

person can carry and still be able to mark the points on the posters. Thus, the device used was a Microsoft

Surface Pro 3 with an Intel Core i5 processor having 2 1.9GHz cores, 4GB of RAM memory and an Intel 4400

graphics card. The rear camera provided the video for tracking with 640x480 pixels resolution.

The STAM system was used to compete on Level 3 of the off-site category along with five other teams.

The system was also evaluated in the on-site competition, in which there were two other teams. Regarding the

off-site category, the organizers released the results anonymously and identified only the winner team. Since

STAM was the winning system in that category, it is possible to attest its performance on Level 3.

Table 3.2 shows the result of Level 3, which is the average distance of all 3D points that were mapped

on the last frame when projected using the matrix computed by the system to the projection of the same 3D

points using the ground truth matrix. It is possible to see that only three teams were able to track the complete

scene on every scenario. On average, STAM was more than four times more accurate than the second place,

which indicates that the algorithm used to optimize camera trajectory was able to minimize the reprojection

error during the scenes.

The results for the on-site category are shown in Table 3.3. Note in Figure 3.29 that there were several

repeated objects on the table. Some of them were small, others were reflective and a few would change during

the time. Additionally, the spaces between tables were almost textureless. All these facts make very hard for

a system to map correctly such environment. Therefore, it is possible to see that only one team and in one

session was able to map and track the whole area. As for STAM, it was able to identify only the closest point

from the starting place. That is due to the fact that the system accumulates too much error during tracking in

such complex environment.



64 CHAPTER 3. PRELIMINARY EXPERIMENTS

Figure 3.29: Images from the tracking area. The chessboard used to calibrate the tracking system is
seen on the top left image. The other images show the tables with the trackable objects and the

posters to mark the 3D points.

Table 3.2: Mean reprojection error in millimeter of all points on the last frame of off-site category
Level 34.

Team ID Scenario 1 Scenario 2 Scenario 3 Average
301 552.833 2245.485 - -
303 253.760 1250.542 402.034 635.445
304 217.836 - - -
305 1673.195 - - -

STAM 104.209 44.990 49.320 66.173
309 195.672 448.788 226.012 290.157

3.4.4 Implementation on Tango Device

As mentioned in Section 3.1, Tango is a platform that combines computer vision techniques with

state-of-the-art sensors, allowing to perform tracking on mobile devices. For this implementation, it was also

selected the Yellowstone tablet.

3.4.4.1 Android Programming

Since STAM was developed in C++, it can be ported to the efficient Android architecture in a process

similar to the one used to port LBF to mobile devices. That includes the identifiers for both platforms, Windows

and Android, so the same code of the STAM system works properly on each of them.

Additionally, it was necessary to compile some of the libraries used in the project itself. For example,

the OpenCV library was recompiled to use only the modules necessary to the application and also to add

extra modules required by the STAM system that are not available on the standard OpenCV version, such

as xfeatures2d. Another example was the library for performing bundle adjustment. In desktop, it was

cvsba (Lourakis et al. 2009), which does not have an Android version. Thus, it was replaced by the Ceres

Solver library (Ceres Solver ), which is an open source C++ library that supports Android and was also

recompiled for the mobile platform.

4A video with this result is also available at https://goo.gl/3mdkcL

https://goo.gl/3mdkcL
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Table 3.3: Mean reprojection error in millimeters of on-site category.

Session 1 Session 2
Team ID 1/1 2/1 3/1 4/1 1/2 2/2 3/2 4/2

A 55 328 239 - 197 291 - -
STAM 42 - - - 231 - - -

C 54 291 53 - 227 271 245 262

3.4.4.2 Results

It was performed a preliminary evaluation of the Tango version of STAM using the scenario shown in

Figure 3.30. It aims to compare performance and precision between the desktop and mobile implementations.

Although the Android version shares the same code of the desktop development, the optimization with bundle

adjustment uses a different library. Therefore, it is necessary to evaluate if this modification has any impact on

the precision.

Figure 3.30: Evaluation environment with the calibration chessboard in the middle and objects with
different types of texture around it.

As for execution time, it was measured the time to perform the three main steps of the STAM technique,

which are calibration, frame by frame tracking using optical flow and optimization with bundle adjustment.

Figure 3.31 compares the results between the desktop5 and the Tango implementation.

The performance difference between platforms on the calibration step is the smallest one. It is because

this procedure only executes OpenCV functions and stores only few data. The performance difference increases

for the tracking step due to two main reasons. First, as the number of points on the map increases, the Android

version felt more the lack of processing and memory resources than the desktop version. Then, as tracking

processing occurs, the Tango device starts to heat up fast, making the execution even slower.

The biggest difference between platforms is on the optimization process. It is because STAM uses

different bundle adjustment libraries on both environments. Moreover, the cvsba library only optimizes the

camera trajectory while the Ceres Solver library optimizes both camera path and point cloud. Therefore, the

optimization step on Android deals with much more variables than the desktop implementation.

Regarding tracking precision of STAM system on the mobile device, the reprojection error on both

implementations was compared. It was used a chessboard printed on a graph paper to calibrate the coordinate

system. Then, the system starts to track a 3D point located on the outer corner of one of the squares, shown in

5Intel Core i7 with 3.60GHz and 8GB of RAM
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Figure 3.31: Execution time in milliseconds to run the main steps of STAM.

Figure 3.32. After one minute of tracking in which the device was moving freely, the user marked the position of

the point at the paper. The same procedure was performed with the desktop version. The average distance of

every assigned position to its correct location is the tracking precision. The error of STAM running on Tango

was 10.50 millimeters (± 3.91) while the average error on desktop was 19.75 millimeters (± 6.98). This was

expected because the Android version has a more robust optimization.

Figure 3.32: Tracking procedure running on Tango device. Small points are the keypoints extracted
from the mapping while the large green dot shows the tracking point, which is a known point in the real

world based on the chessboard template6.

6A video with this result is also available at https://goo.gl/ME9JHJ

https://goo.gl/ME9JHJ
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4
Incremental Semantic Tracking

From the preliminary experiments, it was acknowledged the importance of finding high-level semantic

information from a point cloud. This is a challenging task and it can be used in various applications. Also known

as called semantic modeling, it is useful to compactly represent the scene structure and efficiently understand

the scene context. And such knowledge results in several improvements when applied to tracking techniques. It

was mentioned in this thesis that two of the most used augmented reality libraries incorporate simple semantics

into their tracking techniques. Google’s ARCore and Apple’s ARKit estimate planes to place the augmented

content, which can be the floor, a table or vertical planes such as walls. With the detection of planes, these

trackers allow a more realistic rendering and stable positioning of the virtual objects.

The benefits of detecting other kinds of shapes are even higher. For instance, it can be used to provide

haptic feedback on augmented reality applications (Hettiarachchi et al. 2016). Besides that, objects are usually

overrepresented when defined using a point cloud because it is not necessary to have so many points to

describe it. Therefore, an implicit representation can replace redundant points, which is particularly helpful

when targeting devices with memory restrictions, such as robots or UAVs. Furthermore, a tracking system

can use these primitives to denoise the reconstructed map or constrain its optimization (Ramadasan et al.

2015), which can reduce tracking errors. For instance, these semantic constraints can make a difference in the

optimization phase of the experiment presented in Subsection 3.4.4, in which the execution time increases as

the number of points grows.

This chapter explains a method for incrementally modeling and tracking primitives on a sparse point

cloud. It uses the generating process of point clouds on SLAM effectively and relies on geometric and statistical

analyses to filter unreliable shapes. This approach was presented in (Roberto et al. 2018) and is the extension

of the technique published in (Roberto et al. 2017).

4.1 Semantic Modeling

Automatic reconstruction of 3D object shapes is useful for several applications, such as blueprint

generation for architecture. Since it is a difficult task to accomplish, it has been a relevant research topic

for years. Several methods have been proposed to achieve it by using laser scanners (Zhu et al. 2011) and

cameras (Ma et al. 2005). Due to low-cost RGB-D sensors, namely Microsoft Kinect and mobile devices with

Google Tango, 3D data acquisition became more common and runs in real time even on such devices. These

sensors acquire the depth of an object on a pixel-by-pixel basis and, then, describe the obtained shapes as a

point cloud. Although they are very useful for 3D measurement and visualization, there are some aspects to be

improved. For instance, the scene is usually represented using a point cloud or a mesh computed from it. The

latter simply consists of connected points with little information about the semantic structure.

Several methods have been proposed in the literature to determine semantic in point clouds, most

of them dense. One conventional approach is to use reverse engineering techniques to estimate geometric

primitives, such as region growing (Holz et al. 2012). It can efficiently deal with large amounts of data because
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it makes simple comparisons using the normals to determine if a set of points belongs to the same group.

However, this approach is not robust to noisy point clouds because it can lead to a wrong classification. The

robustness has been improved using both Hough Transform (Drost et al. 2015) and RANSAC (Lopez-Escogido

et al. 2014). Another approach is based on machine learning techniques, which combine local features and

AdaBoost to detect complex objects (Pang et al. 2013). Support Vector Machine (SVM), Fast Point Feature

Histogram (FPFH) descriptors and RANSAC are also used to extract semantics from a point cloud (Huang et al.

2013a). Recent works used Convolutional Neural Network (CNN) to perform a semantic classification using the

keyframes of a dense monocular SLAM and them apply this result to the point cloud (Tateno et al. 2017).

Some methods are able to detect only specific primitives, such as planes (Nguyen et al. 2015; Oehler

et al. 2011) or cylinders (Liu et al. 2013; Qiu et al. 2014). Although limited, detecting only one class of shape

still has several applications. For example, (Kim et al. 2012) estimates the floor plan of houses from the planes

detected in a dense 3D point cloud generated using the Kinect sensor. On the other hand, other methods

deal with different classes of shapes at once. For instance, GlobFit (Li et al. 2011) can estimate planes,

cylinders, cones and spheres. Some even detect pre-modeled complex shapes along with planes and cylinders

in industrial scenarios (Pang et al. 2015).

One advantage of having dense data extracted from laser or infrared sensors is that the acquired

point cloud contains several information that the algorithm can use for the detection. Moreover, the data is

relatively noiseless, which means that a large number of points can stably fit primitive shapes. Therefore, it is

more challenging to extract primitive shapes in a noisy and sparse point cloud of a partially-observed object

computed from image-based approaches with mobile devices. Some studies have tackled this issue by limiting

specific situations, such as detecting only one shape class, such as ARKit and ARCore. Another example

is (Sinha et al. 2008), which estimated planes based on their reconstruction to create textured models. In this

context, RANSAC based methods are very promising to work with sparse point clouds. It is because they

estimate primitives by initially picking a minimal group of points for each shape and detecting the one that

approximates the maximum number of points (Schnabel et al. 2007). Besides, they can also work with data

containing a large number of outliers (Roth et al. 1993). However, the performance of such approach for sparse

point clouds was never investigated.

Another aspect of existing semantic methods is that they usually work in batch, which means that

an input data is analyzed all together only once. It is consistent with the generation method. Usually, the

dense sensors generate the entire point cloud at once. However, the performance of visual SLAM system

regarding both the accuracy of the reconstruction and the computational cost for real-time applications improved

drastically in recent years (Mur-Artal et al. 2015; Uchiyama et al. 2015). One characteristic of several of these

SLAM methods is that the 3D map is generated incrementally. This generating process can provide valuable

information for a semantic approach in addition to the point cloud itself.

4.2 RANSAC-Based Method on Sparse Point Cloud

The first step in this research to perform semantic modeling and tracking on sparse point cloud was to

evaluate how dense methods perform using sparse maps. This could provide valuable information to develop a

new approach specific for sparse point clouds or adapt existing ones. As mentioned in the previous section,

RANSAC methods seem to be promising for that task. From all approaches found in the literature, Efficient

RANSAC (Schnabel et al. 2007) presents the best results. Both regarding execution time and the precision of

the primitive estimated. Moreover, it detects multiple classes of shape, which are planes, cylinders, spheres,

cones and torus.
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4.2.1 Method Overview

Efficient RANSAC requires a point-cloud P with normals for each point as input. The output is a set

of primitive shapes Ψ in which a point pN ∈P will be assigned to only one shape ψn ∈ Ψ or it will remain

unassigned.

In summary, (Schnabel et al. 2007) searches the primitive with maximal score m for each iteration of

the technique. The score is a function based on the number of points that can be part of a shape candidate,

which consider the distance of a compatible point as well as the deviation of its normal from the one of the

primitive. Therefore, for each iteration, the algorithm randomly selects one point of P and then collects a

minimal subset of points that are closer to the first one. It is because (Schnabel et al. 2007) explores the fact

that shapes are local phenomena, which means that the probability that two points belong to the same primitive

is higher the smaller the distance between the points.

Candidates of all considered shape types are generated for every minimal set and all candidates are

collected in the set C . All of the candidates need only three points to describe each type of shape. The score

m for each candidate is computed using a statistical approximation that increases the algorithm performance.

The candidate is only selected if the probability P(|m|, |C |) that there is no better candidate is high. In this

case, |m| and |C | are the number of points in the shape and the number of candidates, respectively. When a

candidate is accepted, the corresponding set of points is removed from P . The algorithm repeats until the

probability P(τ, |C |) of not finding new shapes is high given a τ value that is defined by the user.

4.2.2 Evaluation

There is an implementation of Efficient RANSAC available1. This version was used to test how it deals

with noisy and sparse point clouds. It was created a test scene in which two consecutives keyframes can be

seen in Figure 4.1 (a) and (d). The point cloud, shown in Figure 4.1 (b) and (e), were generated using a SLAM

system (Uchiyama et al. 2015) that was modified to increase the number of generated 3D points. These clouds

have 1,427 and 2,180 points respectively. The reconstruction of the clouds was calibrated using a chessboard

pattern so that the clouds were represented in metric scale.

Efficient RANSAC has five heuristic parameters. To deal with a sparse point cloud, more than 180

thousand different combinations of these parameters were automatically tested. The goal was to find the best

set that maximized the number of assigned points, which were the ones from the input point cloud that were

modified to be fitted to a shape. These parameters should also minimize the distance between these points

and the ones on the input point cloud. Figure 4.1 (c) shows the result for one of the best set of parameters,

which assigned 95.937% of the points with an average distance of 1.949 millimeters for each assigned point.

Efficient RANSAC was able to detect most of the shapes correctly. However, one of the detected primitives was

different from the expected result since a plane was identified as a cylinder.

Another issue noted was the inconsistency between keyframes. Figure 4.1 (f) shows the shapes

detected using the data from the subsequent keyframe. In the result, 93.896% of the points were assigned with

an average distance of 2.098 millimeters. Four detected primitives were wrong, including two planes identified

as cylinders. Compared to the previous keyframe, six shapes were different. This unstable result occurred

often due to the noisy data combined with the small number of points.

1Available at http://cg.cs.uni-bonn.de/en/publications/paper-details/schnabel-2007-efficient/

http://cg.cs.uni-bonn.de/en/publications/paper-details/schnabel-2007-efficient/
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Figure 4.1: Test scene (a) and (d) and their reconstructed point cloud (b) and (e). Eight shapes were
detected on the first keyframe (c) and twelve primitives were found on the second one (f). Even with the
point cloud being very similar, the red points represent the six primitives that were differently detected

between keyframes.

4.3 Geometric and Statistical Incremental Semantic Tracking

From the evaluation, it was clear that Efficient RANSAC achieves good results when detecting primitives

in a sparse point cloud. However, it still requires improvements of consistency and precision for various

applications. Therefore, it is possible to use the primitive estimation from Efficient RANSAC and the generation

process of point cloud from visual SLAM systems to perform an incremental semantic modeling. This approach

can improve both the precision and stability of the primitive detection. Moreover, it also allows the tracking of

these primitives through the scene.

In summary, this method runs Efficient RANSAC using the sparse point clouds that are incrementally

generated from a visual SLAM system. Then, it uses the history information of the estimated primitives and

their parameters to match the shapes over time. Also, it estimates the reliability of the detected primitive using

the geometry of the shape. When this estimation is not reliable enough, it performs a statistical evaluation

using the detection history to eliminate random detected shapes. Figure 4.2 illustrates the flow of the method,

which is detailed in the following subsections.

4.3.1 Efficient RANSAC

When a visual SLAM system reaches a keyframe, it updates the map adding new points to it. Then,

the Geometric and Statistical Incremental Semantic Tracking method, or simply GS-IST, runs Efficient RANSAC

to detect the shapes for every new map. However, it was necessary to make some modifications in both

the code and the configuration in the available code of Efficient RANSAC. The configuration changes aim

to reduce the number of types of primitives detected. Instead of five, three classes of shapes are tracked:

planes, sphere and cylinder. They were selected because they can be used to model most of the objects. For

instance, when modeling industrial scenarios, almost 80% of the scene can be represented only by planes and

cylinders (Huang et al. 2013a).

There were two code modifications. The first one intends to replace the random selection of the initial
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Figure 4.2: Flow of the Geometric and Statistical Incremental Semantic Tracking (GS-IST) approach.

seed to use the same pseudo-random point for every execution, which helps in the evaluation process. The

other change was necessary to save the value of intermediary computation in the Efficient RANSAC algorithm

that will be used later by GS-IST. This data is the average Euclidean distance between the points in the input

point cloud and their respective projection on the estimated shape. Since Efficient RANSAC computes this

projection as part of its algorithm, returning this information would be more effective than recalculating it later.

Originally, this library returns the list of primitives with their respective parameters and all input points used to

estimate them projected on the shapes. After the modification, it also provides for each primitive the sum of the

distances between all input points and their projections. This way, the necessary information will be available

for a quick access when needed.

All the primitives are passed to the subsequent modules, which will identify and eliminate the unreliable

shapes and track the remaining ones.

4.3.2 Shape Fusion

In keypoint-based visual SLAM systems, most of the characteristics are clustered at highly textured

areas. For example, in Figure 4.1 (a), two different patterns over the table were observed and formed two

distinct clusters of points as illustrated in Figure 4.1 (b). In this case, Efficient RANSAC detected them as two

separate planes even though they belong to the same plane on the table.

In order to improve the results from Efficient RANSAC, different shapes that belong to the same
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primitive are first fused. It not only provides a more representative primitive but also increases the overall

information regarding the shape. Since a primitive with a small number of points can be unreliable, it is better

to discard it. However, if more than one shape with similar parameters is detected, even if they are small, it is

safe to assume that they correspond to the same element in the scene. The reason is that it is unlikely that

two primitives are wrongly detected with the same parameters. Therefore, the fusion of primitives based on

parameters helps in the history evaluation. This process uses the similarity of the shape parameters to decide

whether to fuse two shapes or not:

� Plane: the planes are parallel given an angle threshold αt and the distance between them is

smaller than the distance threshold dt ;

� Sphere: the distance between their centers is lower than dt and the difference between their radii

is less than the radius threshold rt ;

� Cylinder: the angle between the axis direction of both cylinder is smaller than αt , the distance

between them is less than dt and the difference between their radii is smaller than rt .

While dt and rt are controlled for each case such that they are 2% of the largest size of the point cloud bounding

box, αt is always set to 5◦.

Additionally, it is considered the proximity between the primitives to restrict or widen the similarity

thresholds. The principle is that two distant shapes have a smaller possibility to be the same than closer

ones. Experimentally, the thresholds are widened by 25% when evaluating the fusion of primitives that have an

intersection. Otherwise, it is restricted by 25%. This means that distant shapes have to be more alike to be

merged. On the other hand, closer primitives are more likely to be the same and the threshold can be less

restricted.

4.3.2.1 Parameter Computation

Similar shapes according to the aforementioned criteria are fused. GS-IST sets the parameters of the

resulting fused shape as a weighted average between the parameters of both primitives. The weight is based

on the geometric analysis of the points in the detected shape. The main idea is to use the average Euclidean

distance of each input point that was used to estimate the primitive to the resulting shape. Even for noisy data,

this distance will be smaller on correct estimations than on wrong ones. For instance, considering a globe

being tracked that was correctly modeled as a sphere or incorrectly detected as a plane. The average distance

of the 3D points in the globe to their projection in the sphere will be smaller when compared to the distance of

the same input points to their projection in the wrong plane. Figure 4.3 illustrates this idea.

Figure 4.3: Difference between the input points to their correspondent projected points on a shape
estimated correctly (left) and incorrectly (right).

Thus, the parameters Pf of the fused shape will be:
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Pf =
n

∑
i=1

wiPi,
�� ��4.1

where n is the number of similar shapes to be fused and Pi are their parameters. The weight wi is:

wi =
np

∑
np
j=1 d j

,
�� ��4.2

where d j is the Euclidean distance between the input points to its projection in the estimated shape and np is

the number of points in the estimated primitive. The weights are normalized and ∑
n
i=1 wi = 1.

Using Equation 4.1, every fused shape will influence the resulting primitive. However, it will be closer

to the one with the smaller error. This average can be applied to every parameter except the plane and the

cylinder position. For the plane position, it is only valid if they are all projections on the other planes. Thus,

the position of one point is projected in all others and then the weighted average is computed, as illustrated in

Figure 4.4. This will also work in case of parallel planes. As for the cylinder position, this parameter will be the

axis intersection. In case of concurrent or parallel axes, the cylinders are fused in pairs if there is more than

one. First, it is selected the points on each axis that is closer to the other and the resulting position will be their

weight average.

Figure 4.4: Fusion of parameters for different classes of shapes.

4.3.2.2 Inclusion Criteria

In case a shape is not fused with any other, GS-IST performs an initial reliability evaluation to decide

whether to keep this detected primitive or not. It is used four geometric characteristics of the primitive to make
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this assessment, as described below:

� Number of Points: shapes with more points are usually more reliable because the estimation is

based on a large amount of data. The number of points in good primitives is larger than 2% of the

whole point cloud;

� Dispersion: it measures how spread are the points in the primitive. Since the keypoints are

clustered around highly textured areas, small regions tend to concentrate most of the shape points.

The dispersion of reliable shapes is smaller than 20% of this value for the whole point cloud;

� Distance: it is the same Euclidean distance mentioned previously. Reliable shapes have an

average distance smaller than 5% of the largest size of the entire point cloud bounding box;

� Radius: the sphere and cylinder radius can also provide a hint regarding the shape’s reliability. A

noisy plane can be estimated as one of these two primitives with a considerable radius. Therefore,

good spheres and cylinders have radius smaller than the largest size of the entire point cloud

bounding box. It should be noted that this criterion is not applied to planes.

The system only keeps shapes that pass in all of these criteria. These values were determined

experimentally and they are based on the dimension of the input point cloud because it puts all thresholds in

proportional to the scene scale.

4.3.3 Shape Matching

To match the primitives between consecutive keyframes, GS-IST uses the intersection of the 3D

bounding box and the distance between the center of mass. Due to several factors, such as inconsistency or

the shape volume, a primitive on a given keyframe can match with several others on the previous one, including

shapes of a different type. Therefore, it is necessary to detect the shape on the previous keyframe that is the

most likely to be the correspondent on the current one. It is computed a s score for each primitive that a given

shape on current detection intersects on the previous estimation. This score is proportional to the intersection

volume and inversely proportional to the distance between the center of mass:

s =
∑

ns
i |ψi|pi

∑
ns
i |ψi|di

|ψs|
∑

ns
i |ψi|

,
�� ��4.3

where ns are the indexes of the shapes with intersection on previous keyframes, |ψi| is the number of points of

that shape, pi and di are the intersection ratio and distance between centers of mass, respectively, and |ψs| is
the number of points in the primitive on the current keyframe. It is selected the one with the maximum score as

correspondence.

4.3.4 Shape Update and Recovery

The shape detected on current frame inherits the history data of the one it matched on previous

detections. These data contain the primitive class that was detected on every keyframe, as well as the average

distance to the original point cloud at that detection. With that information, GS-IST can verify if the current

estimation is following the historical data.

The system checks the class that this primitive was detected as over time. If the current shape has the

same type of the one that appears in more than half of them, including the current detection, its parameter is

updated. This new parameter will be the weighted average of each detection over time. With this update, every
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previous detection will influence the final shape, which results in primitives that are more stable through time

rather than using just the parameters from the last one.

The process to update the new parameter Pu is similar to the one explained in Subsection 4.3.2:

Pu =
n−1

∑
i=1

wiPu−1 +wnPf ,
�� ��4.4

where n is the number of shapes in the past, including current detection and wi are their respective weights,

which are normalized. Pu−1 and Pf are, respectively, the parameters in previous detections and the current

parameter after fusion.

On the other hand, if the current shape has a type that is different from the one that appears most of

the time, it is changed to that class of primitive. As for the parameters, it will be the same as the previous Pu

from that type.

In this step, GS-IST also evaluates shapes that were not detected on the current keyframe but appeared

previously. It recovers these shapes with the same parameters from the last appearance. The history data will

be updated using the average distance of the recovered shape, but it will not have a primitive class associated

at this particular moment. This shape will eventually disappear when not detected anymore because there will

be no class of primitive that appear in more than 50% of the time.

4.3.5 Reliability Computation

At this point, GS-IST has a set of detected shapes and it is necessary to determine which of them are

reliable. This reliability computation is based on a geometric and statistical evaluation.

4.3.5.1 Geometric Analysis

Each shape has a history information since its first appearance, which is a list of each primitive it

matched in the past keyframes. However, a given shape may have different classes over time due to imprecision

or inconsistency. Therefore, to perform the geometric analysis, it is computed the weight wc for each class of

primitive that appears in the history data:

wc =
1

∑
h
i=1 di

,
�� ��4.5

where h is the number of times that each class of primitive appears in the history data and di is the average

distance of the points in that shape to the original point cloud.

The weights are normalized and the one with the maximum value is the dominant class. GS-IST judges

shapes whose dominant primitives have a weight higher than 0.75 as reliable. On the other hand, it considers

unreliable those in which all weights are smaller than 0.5. When the weight of the dominant shape is between

these two values, its classification will be determined by the statistical analysis. If this evaluation shows that the

detection class through history is random, the primitive will be unreliable. Otherwise, it will be set as reliable.

4.3.5.2 Statistical Analysis

GS-IST performs a runs test for randomness to determine if the estimation history is random (Sheskin

2011). Basically, this non-parametric test uses the expected value and standard deviation to estimate the

minimum number of runs that a sample can have to be considered random. A run means a sequence of

consecutive estimates of one particular class of primitive. However, it was decided to look at the history of

classification as binary data because the convergence is faster. Therefore, it was denoted a + for the first
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primitive detected. Then, the sign is repeated if the shape class is the same as the previous one. Otherwise, it

is inverted. For a 5% level of significance, the sample is random if the number of runs is greater than:

N(R) = µ−1.65σ ,
�� ��4.6

where the expected value µ and the standard deviation σ for the total number of samples n are:

µ =
2n−1

3
,

�� ��4.7

σ =

√
16n−29

90
.

�� ��4.8

Table 4.1 shows the example of a history information with a sequence of four spheres, followed by one

cylinder, one plane and then by two other spheres. There are R = 4 runs and n = 8 samples. In this case, the

maximum number of runs for a nonrandom sample is N(R) = 3.269, which indicates a random detection.

Table 4.1: History of the estimated shape from a primitive. For each sample that represents a
keyframe Ki, it was classified as plane (P), sphere (S) or cylinder (C).

K1 K2 K3 K4 K5 K6 K7 K8

Primitive S S S S C P S S
Label + + + + − + − −

4.4 Evaluation

GS-IST was implemented in C++ using OpenCV2 and Efficient RANSAC as libraries. For this evaluation,

it was compared GS-IST with Efficient RANSAC regarding precision, recall and F0.5-Score. The choice of this

metric instead of F1-Score was because it highlights the precision, which is the focus of the method. The only

public dataset found is designed to detect primitives based on single-view images (Xiao et al. 2012), which

was not suitable for this incremental approach. Since it was not found any dataset that has the generating

process of point clouds, it was created one with five different scenarios to evaluate semantic modeling and

tracking, which is available for download3. This dataset has the RGB images, a text file containing the camera

parameters and the rotation and translation for each frame, the list of keyframes and the point cloud generated

on each keyframe. It has five scenes targeting distinct types of primitives and different numbers of keyframes,

as seen in Table 4.2 and illustrated with some screenshots in Figure 4.7. The number of points in the last

keyframe indicates how sparse are the point clouds. It is worth to mention that Efficient RANSAC does not

track the primitives, it only detects the shapes at each keyframe because it is a batch-based approach.

It is possible to see in Figure 4.5 that GS-IST obtained 100% precision in all cases while Efficient

RANSAC never achieves more than 82%. It was noticed that there are more wrong estimations in the initial

keyframes, as seen in the chart on Figure 4.6. It uses the precision of Case 1 over time to illustrate this

behavior, which is expected since the point cloud has few points in the initial reconstructions. The geometric

and statistical analyses are able to identify these early incorrect detections. For instance, in the first three

keyframes of Case 2, the bottle in the right side is assigned as a sphere, then as a cylinder and later as a

sphere again because of the small number of noisy points. For the Efficient RANSAC, the bottle is incorrectly

estimated as a sphere twice in three consecutive detections. Using this tracker, the bottle is assigned to the

2Available at http://opencv.org/
3Available at https://github.com/rarrafael/vSLAM-dataset

http://opencv.org/
https://github.com/rarrafael/vSLAM-dataset
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Table 4.2: Details of the dataset used for the evaluation, in which P, S and C stands for Plane, Sphere
and Cylinder, respectively.

Test Case
Number

of Frames
Number of
Keyframes

Number of Points
in Last Keyframe

Primitives
in Scene

Case 1 1,660 31 16,698 P, S, C
Case 2 1,346 24 3,874 C
Case 3 849 20 4,257 S, C
Case 4 405 7 2,781 P
Case 5 499 17 4,445 P

same primitives in the first three keyframes but, each one has a weight based on the geometric analysis. After

normalization, the weights of detection history are 0.186 (sphere in the first keyframe), 0.537 (cylinder in the

second keyframe) and 0.277 (sphere in the third keyframe). Thus, for GS-IST, the bottle will be assigned as a

cylinder because its weight is higher than the 0.463 of the sphere.

Figure 4.5: Comparison of precision, recall and F0.5-Score between Efficient RANSAC (Schnabel et al.
2007) and GS-IST.

Regarding the recall, Figure 4.5 displays that GS-IST is worse than Efficient RANSAC in three of the

five cases. This happens because Efficient RANSAC outputs twice more shapes on average than GS-IST, even

though some of them are incorrect. Thus, this method compromises recall in order to be entirely sure that the

most reliable shapes are selected. Using the same bottle as an example, in the third keyframe the cylinder

weight is 0.537, which is below the reliability threshold of 0.75. However, since it is above the 0.5 unreliability

mark, it is performed a statistical analysis to verify the randomness of this detection. According to Equation 4.6,
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Figure 4.6: Precision over time of Efficient RANSAC (Schnabel et al. 2007) and GS-IST on Case 1.

this estimation history is random and the shape is assigned as unreliable.

Concerning F0.5-Score, Figure 4.5 shows that GS-IST presents a better result in all cases. The most

significant improvement is in Case 4, which is very challenging because the reconstruction is very noisy.

This evaluation indicates that the restriction imposed improved the precision, but with the cost of having few

shapes detected. Therefore, it is possible to adjust the parameters to have more primitives and decrease the

precision. These changes will depend on the target application. Table 4.3 provides some examples of possible

modifications to make and the outcome for Case 1.

Table 4.3: The influence of modifications in GS-IST on the final precision and recall in Case 1.

Condition Changed Precision Recall
Remove geometrical analysis -1.409% +1.846%

Remove statistical analysis -1.409% +3.139%
Double elimination thresholds -0.704% +2.602%

Figure 4.7 compares the results of both approaches in each test case. It shows situations in which

the same object was detected as distinct shapes at different moments by Efficient RANSAC (rows 1 and 4).

This phenomenon does not happen with GS-IST (rows 2 and 5). The detected shapes are represented by the

projection of the input points used to compute the primitive. Rows 3 and 6 displays one view of the input point

cloud in red and some of the estimated shapes with GS-IST in blue. From the last row, it is possible to see how

challenging is Case 4. Although the books are aligned in real life, the points from the left one are not aligned

with the other two.

4.4.1 Metric Evaluation

Case 1 has a chessboard pattern, which means that the reconstruction can be calibrated to the metric

scale. This allowed an accuracy evaluation of object pose and parameters for this case in particular since there

is no such pattern in the other cases. Considering the absence of ground truth for pose estimation, it was

measured the average distance of each input point to its projection on the estimated primitive to assess how

close they were. Figure 4.8 compares this distance over time between Efficient RANSAC and GS-IST. The leap

in the distance is expected due to the error accumulation of the SLAM method. The average distance was

2.925 ± 0.370 mm for GS-IST while for Efficient RANSAC it was 3.247 ± 0.611 mm. It is worth to mention that

this accuracy depends on the quality of the map. In this case, the error accumulation of the SLAM method

was not precisely measured but it was around 15 mm, which is compatible with the error of the other systems

evaluated in this Ph.D. thesis.

Concerning the parameter accuracy, it was used the radius of the globe and the wipe container, which

are 50 and 40 mm respectively. The average radius of the sphere detected with the globe points was 43.147 ±
0.318 mm, resulting in an error of 6.853 mm. As for the cylinder estimated based on the wipe container, the

33.723 ± 1.001 mm radius is 6.277 mm smaller than the real object. Figure 4.9 shows that in the first detection
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Figure 4.7: The first and third rows show the result of GS-IST on each test case. Blue labels represent
planes, green ones are for spheres and red for cylinders. The second and fourth rows show one
particular view of the input point cloud (in red) and some of the estimated primitives (in blue)4.

Figure 4.8: Average distance in millimeters of each input point to its projection on the estimated
primitive over time for Case 1.

the cylinder radius is 31.051 mm and it gradually increases closer to the actual measurement over time, ending

with 35.952 mm. These are the largest and smallest error in comparison with the ground truth for both the

cylinder and the sphere. It can be credited to parameter update over time and the increase in the number of

points that, even with the error accumulation, adds more data for the shape extractor. The sphere radius, on

the other hand, decreases around 1 mm from the first to the last keyframe, going to the opposite direction of

the actual radius. This can also be credited to error accumulation.

4.4.2 Runtime Evaluation

Concerning the computational cost, Efficient RANSAC takes on average 25.474 ± 10.380 ms to

estimate the primitives in a computer with a Core i7-6820 (2.70 GHz) and 16GB of RAM. The other steps

combined run in 14.995 ± 3.019 ms on average. The bottleneck is the shape fusion step, which takes 9.982 ±

4A video with this result is also available at https://goo.gl/5RGrYm

https://goo.gl/5RGrYm
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Figure 4.9: Error in millimeters over time of the cylinder and the sphere radii detected in Case 1.

2.957 ms of that time. It is worth mentioning that the execution time is related to the number of input points.

Therefore, the measurements, which are the averages of all five test cases, were normalized to a group of

thousand points.

4.4.3 Segmentation Evaluation

It was also evaluated how GS-IST segments the point cloud, which is a natural outcome of semantic

modeling. Several objects have the form of the basic primitives tracked with this method. Looking at an average

from all five test cases, 70.85% of the points can be assigned to a plane, sphere or cylinder. Even though the

dataset deals with scenes designed with this type of primitives, the number is similar to the study that claims

that 78% of all elements in an industrial scenario can be modeled using these three shapes (Huang et al.

2013a). Moreover, the chart on Figure 4.10 shows that only 6.30% of the remaining points were not labeled as

any primitive. The other 22.85% points come from primitives that were discarded because they were unreliable.

Figure 4.10: Percentage of points that were labeled to each primitive.

4.4.4 Point Cloud Representation Evaluation

Finally, it was compared the scene representation using the point cloud and the modeled primitives.

The scene is usually overrepresented when it is described using the points because there are many redundant

points. It was measured the memory necessary to represent the reconstruction of each test case using the

point cloud and it was compared with the description of the same map using the data structure of the primitives

modeled with GS-IST. Figure 4.11 shows this difference in KB between then, ordered by the number of points
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from the reconstructed map. The most significant difference is in the last keyframe of Case 1, which has 16,302

points. Using the point cloud requires 8.69 times more memory than describing the same map using the six

detected primitives plus the 3,915 unreliable and unassigned points.

Figure 4.11: Memory (in KB) required to describe a scene using the point cloud and the data structure
of the detected primitives for Case 1.

Moreover, describing a scene using points commonly results in over and underrepresentation at the

same time. For instance, considering only the cylinder detected in the last keyframe of Case 1, it can be noticed

that there are more points than necessary to describe the textured front side but none to represent the back

side. Thus, it is possible to use much less information to define this shape while filling the missing parts. Using

this cylinder as an example, it is necessary 24 times more memory to describe it using the points than using

the data structure of the detected primitive.

4.4.5 Proof of Concept

It is intended to see how GS-IST responds to an application that benefits from having semantic

knowledge of the environment. It was developed Shape Hunt, a system to help children to identify some of the

primitives they are learning in school. The idea of this proof of concept is that it draws a shape and he/she has

to find real objects with the same geometric form. Since GS-IST has the scene map and can track the objects

in the scene, it can identify all selected shapes and the child always has to find a new one. Figure 4.12 shows

this proof of concept.

Figure 4.12: The application indicates the shape the user has to find (left image). When the
correspondent shape is centered (top-right), it gives a positive feedback (bottom-right) and moves to

the next primitive5.

5A video with this result is also available at https://goo.gl/d76Sfw

https://goo.gl/d76Sfw
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For this proof of concept, it was used the images from the dataset as input for this application. The

scenes are limited to a small workspace, which was sufficient for this test. The application behaves as expected.

Each primitive was detected only once and none was misclassified.

4.4.6 Evaluation on Dense Point Cloud

Although designed for sparse point clouds, the foundations of this tracker were adapted to work in a

dense one. For this situation, it was also used the generating process of the point cloud to create a semantic

map. The incremental process is also explored to improve the precision and stability of the shape detection over

time. Moreover, the history of the fusing process is used to reduce the influence of error accumulation in the

RGB-D SLAM system. Additionally, since the scale is available, it is possible to have the metric information from

the modeled primitives. The evaluation showed that error on measuring the radius of spheres and cylinders

varies between 0.1 and 4.6 millimeters and that it is difficult to model spheres that have the radius smaller than

30.0 mm. Similar to GS-IST, the execution time is proportional to the number of points. However, the modeling

process was executed in less than 100 milliseconds, on average, in a standard desktop. The complete details

about the method adaptation for dense point clouds and its evaluation were published in (Olivier et al. 2018).
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5
Mobile Evaluation of Incremental Semantic Tracking

Mobile devices are reducing the gap to desktop computers in terms of processing power and memory

space. From 2009 to 2015 the desktop CPU clock frequency increased by 33% while the mobile CPU clock

grew 252% in the same period (Halpern et al. 2016). This increment in the processing capabilities of mobile

devices allowed the development of more complex algorithms, including tracking techniques, which is one of

the foundations of augmented reality. This can be linked to the improvement and popularization of augmented

reality solutions for such devices.

Some of these recent advancements in tracking techniques involves removing the necessity of any

external marker, improving the execution time to achieve real-time performance and having a more stable

tracking that is not harmed by jitter or drift. Most of them are thanks to the improvement of the device’s

sensors that allowed the development of visual-inertial trackers. However, less progress was made in regard to

extracting any kind of semantics from the 3D map of the scene. This chapter focus on the evaluation of the

incremental semantic tracker from Chapter 4 on mobile devices, showing that it is feasible to extract and track

basic primitives on such platforms.

5.1 Semantic Modeling on Mobile Devices

As seen in Chapter 2, tracking techniques on mobile devices had a substantial improvement until

2015. Not only on the number of publications but, most importantly, on tracking capabilities. Since then, the

development of visual-inertial techniques become popular and received a lot of attention from the community,

which comes in different flavors. There are distributed approaches that automatically selects between a fast

visual tracker based on optical flow and a visual-inertial odometry depending on certain quality criteria (Piao et al.

2017). Others are improving the traditional visual-inertial methods, such as adding a lightweight tightly-coupled

fusion approach which integrates nonlinear optimization and loop detection (Li et al. 2017). More recently, (Solin

et al. 2018) proposed a probabilistic inertial-visual odometry technique that is robust to occlusion and large-scale

navigation without the need to perform loop closures. They achieve that by propagating the uncertainty of the

measurements to every aspect of the tracking procedure, which includes the camera motion, the geometry and

the minimization problem. However, none of these techniques are able to retrieve any type of semantics from

the scene.

The recent development of machine learning techniques allowed the possibility to extract semantics

from the image based on network architectures designed to deal with constraints of such devices (Sandler et al.

2018). For instance, (Tobías et al. 2016) uses deep learning to perform domain-specific object recognition.

They achieve high classification and near real-time execution time running on an iPad. In another example, a

Convolutional Neural Network (CNN) was incorporated to a mobile augmented reality application to perform

object detection (Rao et al. 2017). They use the inertial sensors and the GPS to track an outdoor environment,

detect geographical landmarks using this CNN and render their information with 3D coherence due to the

inertial odometry. DeepCham (Li et al. 2016) use CNN to recognize objects as well. They rely on distributed
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redundancy, enhanced bounding box and generic deep model to facilitate the creation of training instances.

There are examples of geometric techniques for object recognition too. One example is (Chen et al. 2015),

which created a distributed approach that uses a cache of frames scheme to improve the method performance.

They are able to identify from faces to traffic signs.

Although most of the studies find semantics from images, it is also possible to retrieve these information

from point clouds. This is more complex to achieve with mobile devices due to the overload of data to process,

especially when dealing with dense point sets. However, recently some systems were developed that are able

to extract information from such data. These techniques usually generate the point cloud using Google Tango

devices, such as (Runceanu et al. 2017) that apply an iterative RANSAC approach to segment planes and

model walls of indoor structures. Using a Tango as well, (Sankar et al. 2017) also detect planes and model

indoor environments. Nevertheless, they also detect planes to segment more complex objects and based on

their set of points and visual appearance the authors are able to match the object with a 3D model available in

the library.

Extracting semantic information using sparse point clouds should be simpler when concerning the

amount of data to process. However, this is the same reason why this task is more challenging. Nevertheless,

both Google’s ARCore and Apple’s ARKit incorporate semantic modeling as part of their scene understanding

feature. They both extract planes based on the scene 3D reconstruction for creating surfaces in order to have a

more stable positioning of the virtual objects.

5.2 Mobile Implementation

In order to evaluate how GS-IST would perform running on mobile devices, the technique presented in

the last chapter was ported to the Android platform. Since it was developed in C++, this facilitates the port

using the efficient Android architecture in a similar process used to port LBF and STAM to mobile devices.

It was also necessary to compile the libraries used in the project to Android: OpenCV and Boost1. Efficient

RANSAC was treated as a library as well but the compilation process was a little bit different due to the fact

that it was added to the project in order to facilitate modifications in the source code.

5.2.1 Evaluation

The two most critical aspects of mobile devices are the energy consumption and the temperature.

Although the number of cores and CPU clock have increased lately, the processors’ architecture compromise

on speed to be more efficient on these two facets (Reiner 2012). Most of the studies aiming mobile devices

focus their evaluation only on execution time along with any qualitative assessment that is adequate for the

proposed method. Using the 10 papers cited in the previous section and the 25 relevant studies listed in

Table 2.3 at Chapter 2 as a sample, 62.9% measured execution time and 45.7% evaluated only this criteria.

Energy consumption was evaluated in 17.1%, RAM memory usage in 8.6% and 28.6% performed qualitative

assessments alone. Only (Li et al. 2016) evaluates execution time, energy consumption and memory usage.

However, they did not detail the methodology used to perform these measurements. These three criteria were

used to evaluate GS-IST along with CPU load, which is a good indicator of the potential of parallel execution of

a certain application.

This evaluation was executed in devices with different capabilities and from distinct manufacturers,

which is important to assess how GS-IST performs in dissimilar conditions. The chosen devices were the

Samsung Galaxy S8 and the ASUS ZenFone 3. They were selected using ARCore as a reference. The

1Available at https://www.boost.org

https://www.boost.org
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Galaxy S8 is in the list of the supported devices2 while the ZenFone 3 was selected to stress GS-IST since it

has a configuration inferior to those in that list. Table 5.1 show some of the technical specifications of these

smartphones. All the tests were executed with the device fully charged, on airplane mode, with all other

applications closed and connected to the computer via the USB cable. The only exception was the energy

measurement in which the device was disconnected from the computer.

Table 5.1: Summary of the technical specifications of the devices used for evaluation.

Features Galaxy S8 ZenFone 3
Android Version 8.0 (Oreo) 7.0 (Nougat)

Display 5.8" (1440 x 2960) 5.5" (1080 x 1920)
Chipset Qualcomm MSM8998 Snapdragon 835 Qualcomm MSM8953 Snapdragon 625

CPU Kyro Octa-core (4x2.35 GHz and 4x1.9 GHz) Cortex-A53 Octa-core (2.0 GHz)
Memory 64 GB, 4 GB RAM 32 GB, 3 GB RAM
Battery 3000 mAh 3000 mAh

Regarding the dataset, it was used the same five scenes generated in the previous chapter. The

images and pose files were stored in the device and loaded on every frame. The same happened for the map

files, which were loaded on every keyframe. Since the codes are identical, precision and recall are equal to the

ones presented in the last chapter. Figure 5.1 shows a few keyframes of GS-IST running on both phones.

5.2.1.1 Execution Time

The execution time is proportional to the number of points processed and all time measurements,

which are the averages of all five test cases, were normalized to a group of thousand points. Figure 5.2 shows

that the average execution time of GS-IST on ZenFone 3 is 9.9 times slower in comparison with the desktop

implementation and it is 8.5 times slower on Galaxy S8. For this test, the same desktop computer with Core

i7-6820 (2.70 GHz) processor and 16GB of RAM was used. The shape fusion was slower than the average on

mobile devices, being the desktop implementation 16.5 (ZenFone 3) and 15.0 (Galaxy S8) times faster.

The CPU load is an important measure because it indicates how much room the GS-IST leaves to

perform other processing, such as the SLAM technique. For that evaluation, it was used Qualcomm’s Trepn

Profiler3. This application, available in the Play Store, samples the desired information in a constant time interval.

In this test, both the CPU load and the Normalized CPU load were sampled every 100 milliseconds. The

operating system imposes a limit on how much processing an application can use. The CPU load represents

how much of that limit is being used by the application while the Normalized CPU load indicates how much

processing is being used in relation to the total processing power of the device.

It is possible to observe in Figure 5.3 that GS-IST presents some execution peaks. These apexes

coincide with the keyframes, which are moments in which the technique extracts the primitives. The maximum

normalized load for the ZenFone 3 was 90% of CPU, similar to the 89% value for the Galaxy S8. The average

normalized load was also similar for both devices, in which the Samsung device was 30.545% ± 25.119% of

Normalized CPU load while the ASUS mobile phone presented 27.128% ± 16.353%. This happens because

for most of the time the execution is in between keyframes, a moment in which the device is not processing

much data. The median of the Normalized CPU load is a numerical indication for that and it was 19% and 21%

for the Galaxy S8 and ZenFone 3 respectively. However, there was a difference in the average CPU load, which

was 39.283% ± 27.131% for the Samsung phone and 46.483% ± 25.040% for the ASUS device. Smaller

2Available at https://developers.google.com/ar/discover/supported-devices
3Available at https://developer.qualcomm.com/software/trepn-power-profiler

https://developers.google.com/ar/discover/supported-devices
https://developer.qualcomm.com/software/trepn-power-profiler
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Figure 5.1: Results of GS-IST running on a Samsung Galaxy S8 and an ASUS ZenFone 3. Blue
labels represent planes, green ones are for spheres and red for cylinders4.

differences between the CPU load and the Normalized CPU load suggests that the device is allowed to use the

full potential of the processor. In that case, this value was 8.738% for the Galaxy S8 but it was 19.355% for the

ZenFone 3.

4A video with this result is also available at https://goo.gl/A6T51d

https://goo.gl/A6T51d
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Figure 5.2: GS-IST execution time in milliseconds divided by stages on desktop and two different
mobile devices.

Figure 5.3: CPU load and Normalized CPU load over time of all five test cases on a ZenFone 3 (top)
and Galaxy S8 (bottom).

5.2.1.2 Energy Consumption

The most precise method to evaluate energy consumption is by using external instruments that can

directly measure the current drained by the device. However, these equipment require opening the device to be

attached to the physical battery, which is difficult for most smartphones nowadays since their batteries are not

easily accessible. An alternative is to use profiler tools that use the battery API to assess the voltage and the

state of charge at certain intervals. This procedure is much more accessible but it is not as accurate as using

these external instruments. The latter approach was selected for this evaluation and Trepn Profiler was also

used for this task. Qualcomm’s tool has an accuracy of 99%, which is reported to be one of the highest for

such profilers (Hoque et al. 2015).

As expected, Figure 5.4 shows that energy consumption on both mobile devices follow the same

pattern of the CPU load since more energy is required in those most computational-intense moments. The

average consumption on the ZenFone 3 was 1.776 ± 1.162 W every 100 ms. Since the battery capacity of

this device is 3000 mAh with 3.85 V, this means that this device could run GS-IST for 5 hours and 12 minutes

before drain all the battery when it is fully charged considering an energy efficiency of 80% (Valoen et al. 2007).

The Galaxy S8 battery has the same characteristics (3000 mAh and 3.85 V), which determines that its average

2.271 ± 1.998 W consumption would drain a fully charged battery in 4 hours and 04 minutes.
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Figure 5.4: Energy consumption (in W) over time of all five test cases on ZenFone 3 (top) and Galaxy
S8 (bottom).

5.2.1.3 Memory Usage

Concerning the memory usage, two measurements can be done. One is the storage space the sample

APK requires when installed and the other is the RAM memory it uses when running. The former value can

easily be found in the device settings. In the ZenFone 3, GS-IST used 45.14 MB of the storage space while in

the Galaxy S8 it occupied 47.38 MB.

To evaluate the latter it was used the Android Profiler available on Android Studio, which builds a chart

with the RAM memory usage as the application is executed. Similar to the previous evaluation, Figure 5.5

shows that the RAM memory has some peaks when extracting the primitives. For the ZenFone 3, the moment

with most memory usage is in the 28th keyframe of Case 1 with 195.39 MB, which represents 6.4% of the

device total memory. When not processing the keyframes, the sample app consumes between 26.14 MB and

38.19 MB.

As seen in Figure 5.6, the memory usage for the Galaxy S8 is similar, although with higher absolute

values. The memory peak was 322.97 MB in the 25th keyframe of Case 1, being 7.9% of the phone RAM

memory. The memory consumption when not extracting primitives was above 119.07 MB and below 151.16

MB.

5.3 Discussion

From Figure 5.2 it is possible to see that GS-IST does not run in real-time on any of the devices it was

tested. It is especially true when the number of points increases. However, this approach uses less than a third

of the CPU power regardless of the device. This means that GS-IST and a SLAM technique can run in different

threads in order that the semantic modeling system and the SLAM method can interact with each other without

compromising their performance. Since this mobile version is running on Android devices, it is possible to use

ARCore as a SLAM Method and extract the primitives from the point cloud the SDK generates. Nevertheless, it

is necessary to perform an evaluation to see if the ARCore map is too sparse. Additionally, there is room for

optimization in the implementation.

Moreover, Figure 5.3 shows that Android 7.0 on ZenFone 3 imposed a more restrict limit on how much

processing GS-IST could use. In fact, that limit decreased over time. For instance, GS-IST could use 90%

of the CPU at the beginning of the execution and that boundary decreased to approximately 75% in the 9th

keyframe of Case 1 and to 50% from Case 2 and beyond. On the other hand, Android 8.0 on Galaxy S8
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Figure 5.5: Memory usage over time of GS-IST running on ZenFone 3. Each test case has a different
time scale.

allowed GS-IST to use around 90% of the CPU from beginning to end.

Regarding energy consumption, the 4 hours GS-IST needs to drain the battery in the worst case is

sufficient to use this technique without having extra concerns about the battery. Moreover, considering the

habits and the average time users spend on mobile devices (Hacker Noon 2017), it is unlikely that a person

would use a specific app for a period so long. In order to put this in perspective, Table 5.2 compares the time

other common applications take to fully discharge the battery, such as watching a 1080p video, navigating

using Google Maps and playing FIFA Soccer. Besides the video activity, GS-IST has an energy consumption

similar to the other applications.

The evaluation showed a noticeable difference in RAM memory usage between both devices. The

ASUS phone used approximately 100 MB less memory than the Samsung one. It is possible to see in Figure 5.5

and Figure 5.6 that graphics uses much more memory in Galaxy S8 than in ZenFone 3. The graphics are
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Figure 5.6: Memory usage over time of GS-IST running on Galaxy S8. Each test case has a different
time scale.

Table 5.2: Time that different applications take to fully drain a battery fully charged on ZenFone 3 and
Galaxy S8 devices.

Application ZenFone 3 Galaxy S8
1080p video 8h07min 6h31min
Google Maps (using 4G network) 6h32min 4h29min
GS-IST 5h12min 4h04min
Fifa Soccer (using WiFi connection) 5h09min 4h47min

responsible for more than 70% of that difference. It was not found any details for that. However, based on

observation using other devices, one possibility is that the ASUS device delegate the rendering activity to the

GPU, therefore graphics-related structures uses the GPU memory.

The memory usage of GS-IST was not a concern since, in the worst case, it used less than 8% of
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the total RAM memory of the device. This is due to the fact that modern smartphones have a fair amount

of RAM memory. For them, replacing the representation from point clouds to primitives does not have any

impact on the execution time. However, this change in representation can be important in some situations.

Complex algorithms can use a lot of memory and perform several computations for each element in the scene,

which can overload the powerful devices even for a sparse map. Tracking optimization methods have that

characteristic. In fact, some developers reported that the current version of ARCore (v1.2.1) can run out of

memory when it has to perform bundle adjustment with a map whose size is that of a large room. Rendering

algorithms are another case in which having a large number of elements can cause the usage of most of the

device’s resources. Therefore, a more efficient representation can be very helpful in circumstances like that.
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6
Final Considerations

Tracking on mobile devices evolved a lot since this Ph.D. started four and half years ago. At that time

the phones were not so powerful, which raised big concerns regarding the processing power and memory

capabilities required to run real-time tracking of such devices. The perception was that there was a growing

interest on having tracking techniques on mobile devices but a few were able to track more than a planar

template. The systematic mapping conducted confirmed that perception. Moreover, it also showed that

until 2015, most of the works used the device’s sensors to compute 2D or 2D + θ pose on location-based

applications. Nowadays, the devices improved in great extension and new techniques have emerged, which

make possible the development of increasingly popular SDKs that are able to perform real-time tracking with

6D poses.

Based on the findings of the systematic mapping, it was created experimental scenarios aiming to

evaluate different tracking approaches for mobile devices. One of these experiments was the proposition of a

method to assess the Google Tango platform aiming to establish a reference of the state-of-the-art trackers.

It was observed that the motion tracking errors were around 6 and 14 centimeters for small and large indoor

scenarios, which is suitable to provide a good user experience, including for augmented reality applications.

This experiment was followed by another one that evaluated the use of different forms to develop computer

vision systems on mobile devices, such as using parallelism and distributed approach. It indicated that each

solution has strengths and limitations depending on the situation. However, native development was the most

efficient on average. It was performed experiments to evaluate different tracking techniques that had the

potential to be suitable for mobile devices. The first was a face tracking technique using machine learning and

local binary features, which was adapted to consider the characteristics of mobile devices, such as camera

orientation. The second was a SLAM technique that was originally developed in desktop and ported to a Tango

tablet device. The mobile version presented some issues regarding performance, especially when it needs to

process a large number of data in situations like bundle adjustment.

One of the main lessons learned in this Ph.D. study was the importance of finding high-level semantic

information from a scene. Therefore, it was developed a technique that detects and tracks primitives, called

GS-IST. This method uses the generating process of sparse point clouds of visual SLAM systems and applies

geometrical and statistical analyses to incrementally estimate and track planes, spheres and cylinders. The

evaluation indicated that GS-IST improved precision in all test cases, which outperformed existing methods

in this criteria. The developed approach focuses on precision and for that, it compromises recall to assure

we have the correct shapes. However, we can modify the parameters to increase recall when necessary.

Additionally, this technique was ported to the Android platform and evaluated to assess how it performed

running on mobile devices. The evaluation showed that the mobile version is slower when compared with the

desktop implementation but it can be executed on a separate thread of the SLAM technique because the CPU

load is not so high. Finally, the energy consumption and memory usage were not a concern.
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6.1 Future Work

There is still some work that needs to be done after this Ph.D course. One is to investigate the

possibility of integrating GS-IST with Google’s ARCore, which would allow the development of use cases based

on real-world problems that can benefit from having a semantic knowledge of the scene. One way to do that is

using a well-structured methodology that is based on the design thinking theory that combines interdisciplinary

teams to conceive innovative solutions (Roberto et al. 2016d). There is a team at Voxar Labs creating bridges

between academic research and innovative solutions with high impact and the goal is to team up with them to

run an instance of their process.

After integrating the semantic tracker with ARCore, it is possible to create new test cases that allow

the evaluation on more complex environments. These new scenes can be industrial factories that have

several machines, mechanical workshops loaded with equipment, or warehouses, which have various shelves

and boxes. Although very challenging, these scenarios have several objects that can be modeled with the

primitives GS-IST detects. Therefore, this would allow stressing the technique in order to find points for further

improvements.

Further activities include performing a more extensive evaluation of the accuracy of object tracking

and its parameters. In order to accomplish that, it is necessary to have a dataset with ground truth pose

and measurements. This can be achieved with the creation of other scenes that would include a chessboard

pattern or other means to recover the scale. It is also possible to obtaining ground truth for object pose using

markers tracked with libraries such as ArUco (Garrido-Jurado et al. 2014). An additional possibility is to create

a synthetic case, downsample and apply noisy to the point cloud in order to simulate sparse reconstructions.

Another idea for future work is to use the semantic knowledge of the scene to improve the tracking

results of the visual SLAM system. There are some ways to achieve this goal. One is to constrain the map

3D points during the bundle adjustment to move only over the surface of the shape it belongs, which would

optimize the point cloud respecting the semantic structure and leading to a faster convergence. A different

strategy is to optimize the map using the primitive parameters instead of the points. The idea is to save on

computation by minimizing the error of a few parameters rather than do the same operation for hundreds of

points that represent the same elements on the scene. This would have an impact on the scalability of the

environment to be tracked.

6.2 Contributions

This Ph.D. research produced some contributions to the community:

� A systematic mapping that extensively cataloged and classified the area of tracking for mobile

devices, providing a reference for new researchers in the field to have a quick overview of the area;

� A paper catalog adapted from an open-source system, which is an easy way to display the results

of the mapping;

� An open-source paper crawler1, which can help other researchers to gather scientific papers;

� An evaluation of different architectures aiming to efficiently develop tracking techniques on mobile

devices;

1Available at http://www.cin.ufpe.br/~rar3/tracking_sm/paper-analysis.tar.gz

http://www.cin.ufpe.br/~rar3/tracking_sm/paper-analysis.tar.gz
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� A face tracker system that was part of an application developed in a project in partnership with a

major mobile phone manufacturer;

� A SLAM technique that was developed and used to compete in the 2015 ISMAR Tracking

Competition, winning the first place on the “On-Site Category: Level 3”;

� The method used to evaluate Google Tango, which is an easy way to perform preliminary

evaluations on mobile motion trackers;

� A technique that uses geometric and statistical evaluation to incrementally perform semantic

modeling and tracking of primitives on sparse point clouds;

� A dataset with sparse point clouds of primitives that is helpful to evaluate semantic modeling and

tracking2;

� The port of the incremental semantic tracker to mobile devices;

� A guideline to evaluate computer vision techniques on mobile devices.

6.3 Publications

Some scientific papers were published during this Ph.D. Seven were directly related to this study, as

mentioned in the text. One was related to the systematic mapping (Roberto et al. 2016c). Three were about

the experiments, one being the evaluation of Google Tango (Roberto et al. 2016a), other was the partial results

of the experiment about the architecture of computer vision systems on Android (Lima et al. 2015) and the third

one was a publication about the port of STAM to Google’s Project Tango (Araujo et al. 2016). Finally, three

more papers were published concerning GS-IST (Roberto et al. 2017; Roberto et al. 2018; Olivier et al. 2018).

Additionally, this Ph.D. study was selected to be presented and discussed with the computer vision community

in the PhD Forum of the IEEE Winter Conference on Applications of Computer Vision (WACV) in 2018.

There were also four publications targeting tracking (Lima et al. 2017) or mobile devices (Lins et al.

2014a; Lins et al. 2014b; Lima et al. 2014) that are not directly related to this work but were important to gain

experience in the Ph.D. topics. Additionally, there were seven papers regarding topics not directly related to

this study (Mota et al. 2014; Silva et al. 2015b; Silva et al. 2015a; Mota et al. 2015; Roberto et al. 2016d; Silva

et al. 2016; Roberto et al. 2016b).

2Available at https://github.com/rarrafael/vSLAM-dataset

https://github.com/rarrafael/vSLAM-dataset
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