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Abstract— This paper presents a method for localizing prim-
itive shapes in a dense point cloud computed by the RGB-D
SLAM system. To stably generate a shape map containing only
primitive shapes, the primitive shape is incrementally modeled
by fusing the shapes estimated at previous frames in the SLAM,
so that an accurate shape can be finally generated. Specifically,
the history of the fusing process is used to avoid the influence of
error accumulation in the SLAM. The point cloud of the shape
is then updated by fusing the points in all the previous frames
into a single point cloud. In the experimental results, we show
that metric primitive modeling in texture-less and unprepared
environments can be achieved online.

I. INTRODUCTION

Automated control of cars, drones and robots has been
achieved owing to recent advances in odometry and simul-
taneous localization and mapping(SLAM) technologies [1].
Specifically, visual SLAM(vSLAM) using a monocular cam-
era or an RGB-D camera has become a key technology in
various applications because it needs only a camera, and can
run in real time even on mobile devices [2]. Given that the
stability of localization is degraded under fast camera motion,
an IMU is integrated into the vSLAM to support orientation
estimation. This framework is generally referred to as sensor
fusion or visual-inertial SLAM [3]. Using these state-of-the-
art technologies, device pose can be accurately estimated
under any type of motion in unprepared environments.

In vSLAM, a map is generally represented by a set of
points, lines, or a voxel grid. For example, early work on
vSLAM was based on sparse feature points [4], [5]. The
density of points increased for the robustness in the case of
fast camera motion [6]. As the vSLAM using points fails
in texture-less environments, edges extracted from object
contours were used [7], [8]. A voxel grid-based approach was
proposed to build a dense and accurate map by efficiently
fusing 3D measurements from multiple viewpoints [9]. vS-
LAM using a RGB-D camera also employed the same map
representation as when using a monocular camera [10], [11],
[12]. These map representations are basically designed for
fast and efficient localization tasks. However, a map is not
sufficient for representing scene semantics, and therefore
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needs to be converted into primitive shapes to enable us to
understand 3D scenes. Such structural information is also
useful for robotic grasping tasks [13].

In our previous work, we proposed a method for incremen-
tal structural modeling using sparse points computed from
monocular vSLAM [14]. The advantage of our method is
that system users can interactively recognize the modeling
progress to avoid repeating the measurement in an online
manner. This interactivity is practically useful for 3D mea-
surement applications. In the literature, existing structural
modeling methods employed a batch-based approach such
that data acquired with LiDAR scanners was processed only
once [15]. As the estimated shapes were sensitive to the
degree of noise in the points, we proposed a method using
the generating process of the points in vSLAM so that shapes
were stably estimated by analyzing the temporal history of
estimating shapes. However, the result was strongly affected
by texture in environments, such that the method did not
work in texture-less construction fields. Also, the metric
accuracy was not well investigated because estimated shapes
were up to scale.

In this paper, we propose a method for live structural mod-
eling using RGB-D SLAM so that a shape map containing
only primitive shapes can be generated in texture-less and
unprepared environments. Compared with our previous work,
the processes in the shape matching and shape updating are
improved to be robust to error accumulation in the SLAM. As
the error accumulation gradually causes the mismatching of
primitive shapes during camera movement, we propose to use
the history of fusing shapes to suppress the influence of error
accumulation. Next, the point cloud of the matched shape is
updated by fusing the points extracted in the previous frames.
In the experimental results, we show that metric primitive
modeling can be achieved online.

II. RELATED WORK

Estimating primitive shapes from a point cloud such as
cylinders and planes was a main research issue in structural
modeling. Such structural information effectively represents
3D structure with a few shape parameters and can reduce
the size of memory required. Also, it is useful in various
applications, such as reverse engineering in construction
fields. For example, cylinder detection was required to detect
pipes in manufacturing plants [16], [17]. Indoor 3D model of
a building can be generated with plane detection techniques
by approximating a room as a grid space [18]. Basically,
these methods are based on a batch process with data
acquired offline.



To generate primitive shapes incrementally and online,
structural modeling is incorporated into the process of the vS-
LAMs [19]. Generally, shape constraints can be incorporated
into this mapping process. For example, a planar constraint
is used to accurately build planes in a map and improve
localization accuracy [20], [21]. In the plane map, the
incidence and orthogonality of planar surfaces are identified
for high-level structural models [22]. In these methods, the
target shape was a plane only and more parametric shapes are
required to be detected. As an alternative approach, SLAM++
tackled the issue with an object detection technique so that
objects registered in the database can be mapped with the
vSLAM [23]. As the parametric representation of primi-
tive shapes allows more flexibility in representing a 3D
shape [24], we propose a method for stably estimating
primitive shapes based on the vSLAM.

III. OVERVIEW OF PROPOSE METHOD

The flow of our proposed method is based on our previous
work [14], and is illustrated in Figure 1. A vSLAM algorithm
is used as an external library that sequentially outputs point
clouds in the global coordinate system. We use Real-Time
Appearance-Based Mapping(RTAB Map) [25] because it
includes all basic functions for RGB-D SLAM such as frame-
to-frame/frame-to-map registration with ICP/visual features,
and runs in both textured and texture-less environments.
For the shape detection, we use Efficient RANSAC [26] to
extract some primitive shapes in a point cloud. Given that the
Efficient RANSAC does not stably extract primitive shapes
from its noisy or partial measurement, we incrementally
refine the estimated shapes by fusing the ones computed in
the previous frames.

The processes at each iteration are summarized as follows.
First, a point cloud represented in a global coordinate system
is obtained from the RTAB Map. Next, primitive shapes are
extracted from the point cloud using the Efficient RANSAC.
Then, the extracted shapes are matched with those in the
shape map. If shape parameters of an extracted shape are
similar enough to a particular shape in the shape map, the
shape parameters and the point cloud are updated. Otherwise,
it is stored as a new shape in the shape map. These processes
are iterated at every frame. Note that all of detected shapes
are stored as new shapes at the first frame.

The following operations are of vital importance in each
step. The Efficient RANSAC provides not only accurate
primitive shapes but also inaccurate ones. Therefore, the
inaccurate shapes are suppressed in the shape extraction. In
the shape matching, inaccurate or duplicate objects are again
eliminated, and distinct objects represented by similar shape
parameters are not fused. In the shape update, the shape
parameters and the point cloud in the shape map are refined.

The motivation for live modeling using the vSLAM comes
from the fact that it was difficult to use primitives only
for the mapping in the vSLAM, owing to the instability
of shape detection with the Efficient RANSAC. In our
preliminary experiments, we found that the localization ac-
curacy was largely degraded, or localization failed if a shape
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Fig. 1: Flow of proposed method. At every frame, primitive
shapes are detected, fused with previously detected ones,
finally the shape map is stably generated.

was wrongly extracted at a frame. Also, mapping only the
primitives is not feasible in many situations because the scene
does not always contain enough primitives for the mapping.
Therefore, we propose live structural modeling at the top
of the vSLAM, so that device pose can be stably estimated
from the vSLAM. Following this, structural modeling runs
only when there are primitive shapes in the scene.

IV. SHAPE EXTRACTION

Shape extraction is the process to extract primitive shapes
from a point cloud, and is based on the Efficient RANSAC.
A point cloud is represented in the global coordinate system
defined in the vSLAM. To stably extract a shape from a
point cloud, the distribution of points on the shape should
be visually comprehensible. However, this is not valid in our
case because only a part of an object can be captured from
one view, and the acquired points are noisy owing to various
factors such as the surface property of an object and a struc-
tured light based depth sensor. This partial and noisy point
cloud causes a major issue because the Efficient RANSAC
frequently outputs inaccurate results, such as a plane being
a part of a large cylinder, as illustrated in Figure 2.

To prevent this, we propose to add a credibility condition
for a sphere and a cylinder:

√
N

R
≥ T H (1)

where N is the number of points associated to a shape, R is
a radius, and T H is a threshold empirically determined to
control the result. This condition represents the fact that a
point cloud must be the representative part of a shape, such
that a large shape needs many points. This is useful to reject
inaccurate estimation because only half of an object at most
can be captured with a RGB-D camera.

V. SHAPE MATCHING

To match a shape extracted in the latest frame with the
one in the shape map, we use different shape parameters
according to object types as described in Table I. The
same type of shapes with similar parameters can be simply
matched by using a similarity threshold set for each param-
eter. For instance, as illustrated in Figure 3, two spheres are
matched only if the ratio of their radii is within a certain



Fig. 2: Inaccurate estimation in Efficient RANSAC. Inaccu-
rate estimation occurs with a partial object shape with noise
such that a plane(green) is wrongly approximated by a large
cylinder(red).

TABLE I: Shape parameters

Shape Properties
Sphere Position and radius

Cylinder Axis position, orientation, and radius
Plane Plane position and orientation

range; their distance is less than a certain value; and these
matching conditions are subjects to defined parameters. In
the following sections, the matching process for cylinders
and planes, and the techniques for stable shape matching are
explained.

A. Position distance for cylinders and planes

In the Efficient RANSAC, the position of a cylinder and
a plane is defined as a point on a rotation axis or a plane.
This is problematic because two positions can be distant even
though they are on the same axis or plane. Therefore, their
position comparison is obviously not meaningful using this
approach. To solve this problem, we use an axis distance and
a plane distance instead.

An axis distance between two cylinders is computed by

distance =
DDD1×DDD2

|DDD1×DDD2|
· (PPP1−PPP2) (2)

where PPP1 and PPP2 are the points on each axis, and DDD1 and
DDD2 are the directions of each axis, respectively. This distance
is derived from a standard representation for computing the
distance of skew lines.

A plane distance is meaningful only if they are parallel
because they always intersect at some line in 3D space if
they are not parallel. Therefore, we should assume that two
planes are parallel to compute their distance. The distance is
computed:

distance =
|ax1 +by1 + cz1− (ax0 +by0 + cz0)|√

a2 +b2 + c2
(3)

where (a,b,c) is the average of the normals of both planes,
(x0,y0,z0) is a point on one plane, and (x1,y1,z1) a point on
the other plane.

B. Avoiding the influence of error accumulation in vSLAM

If a shape in the shape map was updated by fusing it
with the shape extracted in the latest frame, the shape fusion
with the latest frame will be influenced by only 10% if the

Fig. 3: Matching two spheres. Two spheres are matched only
if the ratio of their radii and the distance between their
centers are less than a threshold.

�

�

�

���������	�
����������

Fig. 4: Avoiding influence of error accumulation in vSLAM.
In the shape matching, the shape in the latest frame(c) is
matched with the one in the previous frame(b), not only with
previously-updated one(a’).

shape in the shape map is the result of 10 updates. Owing
to error accumulation in vSLAM, a shape extracted in the
latest frame can be far away from the one in the shape
map. An example of this issue is illustrated in Figure 4.
In this figure, the shape a in the shape map is being updated
with the shape b. When the shape a has been updated many
times before, the shape a is only slightly modified by the
shape b as illustrated with the shape a’. As localization error
accumulates in vSLAM, the shape c can be extracted further
away from the shape a’ and their distance becomes more
than a threshold even though they should be matched.

The solution is to not only use the updated shape (a’) in
the previous frame to match with the shape (c) extracted in
the latest frame, but also the shape (b) from the frame before
the latest. To do this, the history of the shape matching,
such as the affiliation between the updated shape and the
lastly detected one, is stored. After detecting the shape at
incoming frames again, it is matched with the shape that
was last detected. This allows us to have to deal only with
the frame-to-frame pose estimation error, and not with the
accumulation of error since the beginning.

C. Adaptive thresholding for shape matching

In the shape matching, thresholds for parameters in Table I
control whether a shape is matched or not. When a shape is
approximated with few points, its error is generally more
important, making it less likely to match properly. For
example, as illustrated in Figure 5, an inner circle was
extracted with a few points. Whereas the outer circle should



Fig. 5: Importance of adaptive thresholding for shape match-
ing. The size of extracted circles varies according to the
number of points used (red & green). Since estimation of
a shape with a few points is not stable, it is important to
adaptively set a threshold for shape matching.

ideally be extracted with these points if there is no error.
To solve this problem, a scale factor s based on linear

regression is computed

s =−aN +b (4)

where N is the number of points, a and b are positive coeffi-
cients. The lowest value of s is set as 1. In the thresholding,
s is multiplied with each threshold to adaptively change it
according to the shape size. As the error is relative to both the
RTAB Map and the Efficient RANSAC outputs, it is difficult
to theoretically derive the methodology to determine the
coefficients. Instead, they are empirically optimized through
experiments such as a =−0.02, and b = 4

VI. SHAPE UPDATE

The goal of the shape update is to determine the most
probable primitive parameters based on all the information
during vSLAM. The point cloud of a shape is updated and
refined as well.

A. Updating shape parameters and point cloud

In shape parameter update, a weighting scheme is incor-
porated such as a weight corresponding to the number of
times it has been updated. When a shape in the latest frame
matches with the one in the shape map, the shape parameters
are updated using

pppuuu =
wpppppp + ppplll

w+1
(5)

where w is the weight, pppppp, ppplll , pppuuu are parameters of a
shape in the shape map, the parameters in the last frame
and the updated parameters of the shape in the shape map,
respectively. This gives an equal importance to the shape in
the past frames that have been used for the update since the
beginning.

Next, the point cloud of a shape is updated by fusing the
one in the latest frame with the one in the shape map to
generate a single point cloud. This process is required to
estimate the length of a cylinder and the size of a plane
because they are infinite in the parametric representation.
Also, a hemisphere can be extracted from the arc length in
the point cloud. As illustrated in Figure 6, the shape surface
is first generated with the updated shape parameters. Then,
point cloud fusion is simply done by projecting the two point

Fig. 6: Updating point cloud. Points in two matched shapes
(blue & green) are projected on the updated shape (red).

clouds on the surface. As the capture continues, the amount
of points in the point cloud accumulates. Therefore, the point
cloud of the shape is downsampled after each point cloud
fusion during a shape update process.

In the next section, the detail of the point projection is
described.

B. Point projection for point cloud fusion

A point projection method depends on object types. For
planes, a target point TTT is projected onto a point PPP on the
plane:

PPP = TTT − (VVV ·NNN ppp)NNN ppp (6)

where VVV is the vector from an arbitrary point on the plane to
the target point, NNN ppp is the normalized normal vector of the
plane, as illustrated in Figure 7a. For spheres, a target point
TTT is projected onto a point PPP on the sphere:

PPP =CCC+R
TTT −CCC
|TTT −CCC|

(7)

where CCC is the sphere center, and R is the radius, as illustrated
in Figure 7b. For cylinders, the projection is done with
the combination of the procedures for planes and spheres.
First, the intersection PPP′′′ between the rotation axis and the
perpendicular vector from a target point TTT to the axis is
computed:

PPP′′′ = XXX +(DDD ·VVV )DDD (8)

where XXX is an arbitrary point on the axis, DDD is the normalized
axis vector, VVV is the vector from XXX to TTT , as illustrated
in Figure 7c. Then, PPP is computed with the same calculation
with that for spheres, as illustrated in Figure 7b.

C. Removing unreliable shapes

Given that Efficient RANSAC is based on random sam-
pling, a shape that is a poor representation of the true
shape can be detected. Such an erroneous shape would be
rarely detected and have a lower weight than shapes that
are detected many times and are a better representation.
Consequently, we can eliminate such shapes by using a
threshold for the weight such as removing shapes with a
weight lower than average.
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Fig. 7: Point projection. After updating shape parameters, point clouds are projected onto the surface of the updated shape.

As in [14], a bounding box of a shape is used to prevent
some erroneous matching. For example, two planes at a
distance can be matched because they are on the same plane,
even though they are not related in 3D space. In this case, it
is not enough to check shape parameters. Also, there is the
case where a subset of the points is matched but the rest of
the points are not. Comparing their bounding boxes simply
solves these issues.

VII. EVALUATION

To evaluate the performance of our method, we investi-
gate the result of metric structural modeling using objects
whose sizes are known. As a common dataset for structural
modeling does not exist, we prepared our own dataset for
the evaluation.

A. Setup

As illustrated in Figure 8, we prepared five cylinders, two
hemispheres, and four spheres with different radii for the
evaluation. The surface material of cylinders was polyvinyl
chloride, and that of hemispheres and spheres was styrene
foam. The cylinders are practically used for pipes in con-
struction fields. As the radii of the objects were provided in
their specification sheets by production companies, we used
them as the ground truth.

For the data capture, we used a Kinect v1 sensor. We
arbitrarily put objects on a desk and image sequences were
captured with an arbitrary hand-held motion around the
objects for a minute. We made the cylinder dataset containing
cylinders only, and the sphere dataset containing hemispheres
and spheres. For each dataset, we compared their estimated
radii with their ground truth to quantitatively investigate the
metric results.

B. Metric results

For the cylinder dataset, the modeling result is illustrated
in Figure 9. and the accuracy of the result is described
in Table II. In the table, the object number is determined
from the left of the image. The accuracy was related to radius
size such that the accuracy of smaller cylinders tended to be
worse than larger ones. This is because fewer points can be
captured from smaller objects.

For the sphere dataset, the modeling result is illustrated
in Figure 10 and the accuracy of the result is described
in Table III. Both the two hemispheres and the two spheres

(a) Five cylinders practically used in construction fields

(b) Two hemispheres at both ends and four spheres between
the hemispheres

Fig. 8: Evaluation setup. Objects with know sizes are pre-
pared for the metric evaluation.

were accurately modeled. However, two spheres were not
extracted owing to their small size. If the size of an object is
small, the number of points in a point cloud is also low. With
a Kinect v1 sensor, it was difficult to model any sphere which
radius size was less than 30 mm in our experiment owing
to the depth range of the sensor and the image resolution.
Spheres tended to be more accurately modeled than cylinders

C. Examples of shape maps

Examples of shape maps are illustrated in Figure 11. We
arbitrarily put different objects in the scene and generated
the shape maps with our method. Given that these scenes



Fig. 9: Point clouds on cylinders. Cylinders(green) on the
desk(red) were accurately modeled.

TABLE II: Results of measuring cylinders

Object Ground Truth (mm) Estimated (mm) Error (mm)
1 27.0 31.5 4.5
2 53.0 54.3 1.3
3 32.5 37.1 4.6
4 40.0 41.0 1.0
5 39.0 40.0 1.0

comprised many planes including walls and cubes, most of
the parts were modeled as planes. Cylinders and spheres in
the scenes were correctly modeled.

During the incremental modeling, we measured compu-
tational costs with respect to the number of points in an
incoming frame, as illustrated in Figure 12. The measurement
was performed with Windows 10, Intel Xeon CPU E5-1620
v2 3.7 GHz, and 64GB RAM. The shape matching and
update took less than 100-ms on average. The total cost was
proportional to the number of points in a point cloud at a
frame.

VIII. CONCLUSION

We proposed an incremental structural modeling using
RGB-D SLAM. To generate a shape map containing prim-
itive shapes, a primitive shape is incrementally modeled by
fusing shapes estimated at previous frames. The history of
the fusing process is used to avoid the influence of error
accumulation in the SLAM. The point cloud of the shape
is then updated by fusing the points in all the previous
frames into a single point cloud. In the experimental results,
we showed the performance of metric primitive modeling
and its computational costs. In future, structural modeling
using a voxel grid can be addressed, such that constraints of
primitive shapes can be incorporated into surface extraction
from the grid. Also, cube detection is important for structural
modeling [22], and should be addressed.
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